
Development of a Genotyping-in-Thousands by sequencing panel for genetic monitoring of 
peppered chub (Macrhybopsis tetranema) 
 
Submitted by:  
 
Guilherme Caeiro-Dias, PhD, and Megan Osborne, PhD 
Department of Biology & Museum of Southwestern Biology  
University of New Mexico  
Albuquerque, NM 87131  
505-277-3234  
Email: gcaeirodias@unm.edu; mosborne@unm.edu  
 
 
Submitted to:  
 
Karen H. Gaines  
Share with Wildlife Program Coordinator 
Wildlife Management Division 
New Mexico Department of Game and Fish  
1 Wildlife Way  
Santa Fe, NM 87507  
 
Final report submitted for period ending June 30th 2025. 
  

mailto:gcaeirodias@unm.edu
mailto:mosborne@unm.edu


 2 

Table of Contents 
 
 
  

Introduction 3 
Methods 4 

Identification of SNPs 4 
Primer design for GT-seq and loci used for panel optimization 6 
GT-seq library preparation and PCR multiplex optimization 7 
GT-seq panel validation 9 

Results 10 
Microhaplotype identification and primer design 10 
GT-seq library preparation and PCR multiplex optimization 11 
GT-seq panel validation 13 

Discussion 16 
Utility of the GT-seq panel for conservation of peppered chub 18 

Acknowledgements 18 
References 19 



 3 

Introduction 
Peppered chub (Macrhybopsis tetranema) is a small-bodied and short-lived fish species 
belonging to the pelagic-broadcast spawning reproductive guild (Perkin & Gido, 2011; Platania 
& Altenbach, 1998). Fishes belonging to this guild are found in streams of the North American 
Great Plains (Dodds et al., 2004; e.g., Dudley & Platania, 2007). Peppered chub and other 
species within this reproductive guild are negatively affected by anthropogenic changes to rivers. 
These impacts include fragmentation, altered flow regimes, and habitat degradation. Survival and 
reproductive success of peppered chub have been linked to river discharge (Wilde & Durham, 
2008) and connectivity that facilitates source-sink dynamics (Luttrell et al., 1999; Perkin & Gido, 
2011). Historically, peppered chub was found in the upper Arkansas River Basin in parts of 
Colorado (CO), Kansas (KS), New Mexico (NM), Oklahoma (OK), and Texas (TX). Intensive 
surveys in 2011 and 2013 recorded declines in the Ninnescah and Arkansas rivers in KS, and 
sampling in 2015 documented probable extirpation of peppered chub from these rivers due to 
extensive regional drought during this period (Pennock & Gido, 2017; Perkin, Gido, Cooper, et 
al., 2015). Peppered chub is now extirpated from >94% of its historic range, with only one 
remaining population inhabiting 218 km of the South Canadian River between Ute Lake (NM) 
and Lake Meredith (TX). The South Canadian River population of peppered chub has been in 
decline since impoundment of the South Canadian River by Ute Reservoir. The reservoir has 
caused a 49% reduction in mean annual discharge (Wilde & Durham, 2008). The restricted range 
of peppered chub makes the species extremely vulnerable to extinction through stochastic 
environmental events (e.g., drought) and/or demographic factors (e.g., recruitment failure, 
mortality caused by disease). As such, this species was listed as an endangered species in 2022 
and 1,719 river kms were proposed as critical habitat (U. S. Fish and Wildlife Service, 2022). 
 
Genetic monitoring is an important component of conservation and management efforts for 
imperiled species. This type of monitoring quantifies temporal changes in genetic diversity and 
effective population size (Ne) over contemporary timescales (Schwartz et al., 2007). These 
parameters are important to measure because they provide insight into the long-term adaptive 
potential and extinction risk of species that cannot be obtained solely with traditional 
demographic monitoring. Over the last ten years, nine neutrally-evolving microsatellite loci were 
used to obtain empirical measurements of genetic diversity and contemporary effective 
population size for peppered chub (Osborne et al., 2021). Microsatellites were used due to their 
high variability and because they can be employed with minimal startup costs. Single nucleotide 
polymorphisms (SNPs) are alternative molecular markers and can be used to gather the same 
type of information as microsatellites. Single nucleotide polymorphisms are typically biallelic 
and have inherently lower resolution power when compared to the multi-allelic microsatellites. 
However, SNPs represent the most widespread source of variation within genomes (Brumfield et 
al., 2003) and with the development of increasingly fast and inexpensive high-throughput Next 
Generation Sequencing (NGS) methods, it is now easy to identify enough SNPs to overcome the 
advantages of microsatellites and to surmount the lower resolution power of small numbers of 
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SNPs (Hess et al., 2011; Liu et al., 2005; Narum et al., 2008). Moreover, genotyping SNPs on 
large numbers of individuals is more cost- and labor-effective (after protocols are optimized for 
target species) and genotyping error rates are lower. In addition, SNP genotyping from reduced 
representation sequencing methods involves the sequencing of smaller fragments of DNA, so it 
can be effective even when DNA is limited or degraded. Finally, SNP genotyping is more easily 
standardized across laboratories compared to microsatellites and hence can be used by multiple 
facilities to produce comparable results. With current technology, these advantages make SNPs 
more powerful genetic markers for genetic monitoring as compared to microsatellites. 
Reduced representation sequencing methods, like Nextera-tagmented reductively amplified DNA 
sequencing (nextRAD-seq; Russello et al., 2015), are cost-effective ways to identify thousands 
of SNPs across several hundreds of samples, but the loci obtained from independent genomic 
library preparations may not always be consistent. When the number of loci necessary for 
genotyping is relatively small (e.g., a few hundred) and the number of samples is high (e.g., 
hundreds to thousands), methods based on multiplex PCR and NGS can be more advantageous. 
Genotyping-in-Thousands by sequencing (GT-seq) is a method of targeted SNP genotyping that 
uses multiplexed PCR amplicon sequencing (Campbell et al., 2015). This method allows 
simultaneous amplification of hundreds of targeted genetic loci while barcoding of individuals 
allows thousands of individual samples to be sequenced in a single lane with a compatible 
Illumina® sequencing instrument (Campbell et al., 2015). Once a GT-seq panel is developed for 
the target species, GT-seq provides a cost-effective and efficient means of monitoring genetic 
variation and effective population size estimated from hundreds of SNPs.  
 
Here we report the (i) discovery of genetic variants and identification of SNPs using a new and 
more complete peppered chub draft genome, (ii) primer design to develop a GT-seq panel for 
peppered chub, (iii) loci selection; and (iv) the optimized GT-seq panel that can be used for 
annual genetic monitoring of the South Canadian River population and the recently-founded 
peppered chub population held at the Southwestern Native Aquatic Resource and Recovery 
Center.  
 
Methods 
Identification of SNPs 
Prior to this project, 189 samples were provided by the New Mexico Department of Game and 
Fish. These samples were collected during routine population monitoring from five sites on the 
South Canadian River between Ute Lake (NM) and Lake Meredith (TX) from 2015 to 2020. 
These were sequenced at SNPsaurus using a nextRAD sequencing protocol following Russello et 
al. (2015). The raw reads were mapped against the most updated version of a peppered chub 
draft genome developed in our laboratory (assembled to a scaffold level) with Bowtie version 
2.4.2 (Langmead & Salzberg, 2012) using the “local alignment” and default “very sensitive” 
options. Successfully aligned reads were filtered with Samtools v. 1.16 (Danecek et al., 2021; Li 
et al., 2009) to remove reads with mapping quality lower than 20. Before variant calling, we used 
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Picard tools v. 2.20.8 (Broad Institute 2019; https://broadinstitute.github.io/picard/) to add read 
group (RG) flags to bam files. Genetic variants were identified using FreeBayes v. 1.3.6 
(Garrison & Marth, 2012) on genomic intervals with at least 150 bp depth of coverage across all 
individuals. Raw variants were kept if base quality was at least 5 and a maximum of the best 10 
from each alignment were kept, ranked by sum of base quality score. 
 
To remove erroneous or potentially erroneous variants, we applied extensive computational 
filtering so that only high-quality SNPs were retained in the final dataset. Using VCFtools v. 
0.1.16 (Danecek et al., 2011) we removed variants with mean depth of coverage lower than 20 
and higher than 100, with minor allele count less than three, with minor allele frequency lower 
than 2%, with genotype depth of coverage lower than five, and with genotype quality lower than 
20. Multi-nucleotide states were decomposed into single variants with vcflib 
(https://github.com/ekg/vcflib) and VCFtools was used to filter out nucleotide insertions and 
deletions and to retain only the biallelic SNPs. The dataset was then filtered by missing data, 
keeping SNPs present at least in 80% of samples and removing individuals with more than 30% 
missing data. The bash script dDocent_filters 
(https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters) was then used to filter 
SNPs based on allelic balance at heterozygous genotypes, strand representation, quality vs depth. 
First, loci were removed if at heterozygous positions, the alternate allele had a coverage lower 
than 20% or higher than 80% compared with the reference allele, because reads with alleles from 
heterozygous positions are expected to have similar frequencies in the same individual. Alleles 
with frequencies smaller than 0.01 and higher than 0.99 were not removed to account for fixed 
alleles. Additionally, if the quality sum of the reference or alternate allele was zero, the locus 
was removed. This procedure removes positions with spurious heterozygous genotype calls. Loci 
with the ratio between the mean mapping quality of the alternate and reference allele of lower 
than 0.9 or higher than 1.05 were also removed, because loci from the same genomic location 
should have large discrepancies between mapping qualities of two alleles. Furthermore, loci with 
quality scores of less than half of the total depth were excluded because excessive depth inflates 
quality scores when using FreeBayes. Of the remaining loci, the average depth and standard 
deviation across all individuals was calculated. Loci with depth greater than the average depth 
plus one standard deviation were removed if the quality score was less than two times the depth. 
Finally, this script removed loci with a mean depth across individuals of greater than two times 
the mode (98) that corresponded approximately to the 95th percentile of mean depth. 
Subsequently, potential erroneous SNPs were filtered based on Hardy-Weinberg equilibrium 
(HWE) expectations with the pearl script filter_hwe_by_pop.pl 
(https://github.com/jpuritz/dDocent/blob/master/scripts/filter_hwe_by_pop.pl). Typically, errors 
would have a low p-value and would be present in many populations. SNPs present in more than 
50% of the populations (here each year was considered a ‘population’) and with an HWE p-value 
lower than 0.001 were removed. We further filtered out potentially incorrectly-assembled 
paralogous loci that exhibit a large variation in read depth across all individuals. Standard 

https://broadinstitute.github.io/picard/
https://github.com/ekg/vcflib
https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
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deviation was estimated with package stats implemented in R v. 4.2.1 (R Core Team 2022) and 
read depth with VCFtools. An additional filtering based on missing data per locus (keeping loci 
present in 80% of individuals) was applied again at this point. The remaining SNPs were used to 
identify haplotypes within genetic loci (referred to as microhaplotypes). Haplotyping SNPs 
within a locus also eliminates possible paralogous loci while neutralizing physical linkage 
without losing data (Willis et al., 2017). This step was performed with the rad_haplotyper.pl 
pearl script (Willis et al., 2017; https://github.com/chollenbeck/rad_haplotyper). 
Microhaplotypes were then excluded when considered paralogs in at least five individuals and 
when missing from more than 30% of individuals. Retained loci were tested for deviations from 
HWE and for linkage disequilibrium (LD), considering individuals captured in each year as a 
single “population”. Departures from HWE were assessed using a chi-square test on 
microhaplotype data with R package pegas v. 1.0 (Paradis, 2010) and using the Bonferroni 
correction for multiple comparisons implemented in the R package rcompanion v. 2.4.0 
(Mangiafico, 2021). Estimations of LD were performed on SNP data using the SNP of each 
microhaplotype with higher minimum allele frequency. If a SNP in LD was removed, then the 
entire locus was removed. Tests for LD were performed using the chi-square test implemented in 
the R package GUSLD v. 1.0.1 (Bilton et al., 2018) and the Bonferroni correction to account for 
multiple simultaneous tests. Loci were considered to be deviating from HWE and to be in LD if 
tests were significant across the six temporal samples (p-value < 0.05). In both cases, if loci with 
significant chi-square values appeared in multiple pairs, the loci that appeared in the highest 
number of comparisons were discarded to keep the maximum number of loci possible. In the 
remainder of instances, one locus from each pair was discarded randomly. After filtering, the 
final dataset represents a robust genome-wide neutral SNP dataset. 
 
Primer design for GT-seq and loci used for panel optimization 
To facilitate primer design, the loci containing the filtered SNPs were filtered based on the SNP 
positions within each locus sequence. Only loci with at least 33 bp before the first and after the 
last SNP were retained. The first and last 25 bp allow for sufficient flanking regions free of 
variable positions for primer design, while the other 8 bp ensures that primers were not designed 
in close proximity to the first and last SNP on the sequence. For loci with multiple SNPs that 
were discarded after applying these initial filters, we removed the SNP closer to the edge of the 
locus and applied the same filters to potentially retain the remaining SNPs. This step was 
performed iteratively, until all of the remaining SNPs were either discarded or retained. Loci that 
would result in sequences longer than 150 bp were then removed because this is the maximum 
length permitted by the sequencing approach employed for GT-seq. Resulting loci were used for 
primer design. Using the draft peppered chub genome as a template, Primer3 command line 
version 2.5.0 (Untergasser et al., 2012) was used to design primers for those loci. Primer design 
parameters were defined as primer length of 18 to 25 bp, product size of 100 to 150 bp, melting 
temperature (Tm) of 60ºC, GC content of 50%, and fewer than four consecutive repeat motifs 
(PolyX). When possible, we allowed design of up to 5 primer pairs for each locus. For each 

https://github.com/chollenbeck/rad_haplotyper)
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locus, the best pair was mapped against the peppered chub draft genome using the blastn 
program (Altschul et al., 1997) with the blastn-short task implemented in BLAST+ v. 2.9.0 
(Camacho et al., 2009). If at least one primer matched one or more off-target sites with 100% 
coverage and identity, that pair was discarded. For those cases, the next best pair was mapped on 
the draft genome as previously described and the process was repeated until a primer pair 
mapped only to the target locus or until no primer pairs remained. 
 
Research has shown that approximately 300 amplicons is a reasonable number to optimize panel 
performance during library construction (Beacham et al., 2018; McKinney et al., 2018). Previous 
studies also suggest that choosing loci with greater genetic differentiation (e.g., FST) should 
maximize accuracy for genetic assignment analysis (Ackerman et al., 2011; Storer et al., 2012). 
Furthermore, in a previous study we found that selecting half of the loci with higher FST and 
selecting another half at random was optimal for genetic monitoring (Caeiro-Dias et al., in 
review). As such, the goal was to select 500 loci that reflected FST values found in the complete 
dataset (2,804 loci) from the pool of loci with successful primers designed to start the GT-seq 
library optimization. Such optimization consists of several rounds of library preparation and 
sequencing to assess the performance of primers. Primers identified as problematic in the PCR 
multiplex (e.g., primers involved in high proportion of primer interactions, primers over- or 
under-amplifying, and primers amplifying off-target products) would then be removed from the 
next library preparation and sequencing until we reached an optimized PCR multiplex 
performance to produce the GT-seq library. However, we were able to retain only 491 loci with 
adequate primer pairs (see Preliminary Results) and all of these loci were used for the 
optimization process. The SNPs present in those loci were haplotyped using rad_haplotyper.pl 
script with default parameters and the resulting microhaplotypes were used to estimate FST and 
observed heterozygosity (Ho) with R package diveRsity v. 1.9.90 (Keenan et al., 2013) to 
evaluate the levels of diversity discriminated by that dataset. The same metrics were estimated 
for the complete dataset (2,804 loci), and we then tested if the distributions of values were 
similar between dataset, using non-parametric Kruskal-Wallis tests (because none of the metrics 
follow a normal distribution) implemented in R. 
 
GT-seq library preparation and PCR multiplex optimization 
To test the efficacy of designed primers to amplify the target loci, an initial GT-seq library was 
prepared using the 491 primer pairs (see Preliminary Results) with 47 samples previously used 
for nextRAD-seq and SNP discovery (to compare genotyping accuracy). The library was 
sequenced following Campbell et al. (2015) with two minor modifications. First, the read 1 
primer that allows sequencing of our target fragment was used without the last adenine base (A), 
as advised by the authors. Second, to facilitate sequencing on an Illumina® NextSeq 2000 
platform, we designed a custom index 2 primer to read the i5 index. This primer was the reverse-
complement of the read 1 primer. Single-end sequencing was performed on an Illumina® 
NextSeq 2000 at the University of New Mexico Health Sciences Center. Demultiplexing was 
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performed with BCLConvert v. 4.2.7 (Illumina®, Inc.; 
https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html) allowing 
one mismatch per index. Only read 1 was used for downstream analysis. 
 
Demultiplexed data were used to estimate the number of reads containing the expected primer 
combination and the number of reads resulting from several types of primer interactions using 
the script GTseq_Primer-Interactions.pl from GTseq-Pipeline (Campbell et al., 2015; 
https://github.com/GTseq/GTseq-Pipeline). The primary goal was to identify and remove primer 
pairs that disproportionally contributed to primer interactions. This increased the depth of 
coverage of target loci with a reduced number of primer interactions. Primers with excessive 
numbers of interactions with primers from other pairs were discarded from PCR multiplex to 
prepare the subsequent genomic library. In cases where a primer interacted mostly with a single 
other primer, we kept the pair that sequenced the locus with higher FST. Next, the GTscore 
pipeline v. 1.3 (https://github.com/gjmckinney/GTscore) was used to identify genotypes. Prior to 
the analysis of the first sequencing run results, in-silico probes were designed for each SNP to 
include eight nucleotides flanking for each SNP and to include variants when overlapping 
identified SNPs (see manual for details on probe design 
https://github.com/gjmckinney/GTscore/blob/master/GTScoreDocumentation%20V1.3.docx). 
AmpliconRadCounter.pl script was used to count the number of unique reads per individual to 
identify on-target reads and to count the number of reads containing each SNP allele for every 
individual. Then counts of reads containing a SNP allele for each individual were used for 
microhaplotype genotyping with the maximum likelihood algorithm described by McKinney et 
al. (2018) and implemented in GTscore.R script. Genotype accuracy between 
nextRAD_complete and GT-seq was estimated from samples genotyped for at least 70% of the 
loci. 
 
The average proportion of primer interactions and average genotype accuracy previously 
estimated were used as PCR multiplex optimization criteria. A high proportion of reads resulting 
from primer interactions is expected to have a large negative impact on PCR multiplex 
performance. As such, primer pairs producing a high proportion of primer interactions are 
typically removed during optimization of GT-seq panels (Hayward et al., 2022; Schmidt et al., 
2020). Another criterion commonly used to decide whether to exclude or retain loci in GT-seq 
panels is genotype accuracy (Bootsma et al., 2020; Schmidt et al., 2020). The optimization 
process (library preparation, sequencing, evaluation of primer interactions, and genotype 
accuracy estimation) was repeated four times, until the proportion of reads from primer 
interactions was lower than one third of the sum of total reads and genotype accuracy was higher 
than 95%. In the first optimization round, loci were discarded only based on primer interactions. 
Other criteria were not applied at this stage because a high proportion of primer interactions is 
expected to bias such criteria values (Caeiro-Dias et al., in review). In the second optimization 
round we removed loci with primer/probe proportion lower than 40%, single SNPs with 

https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html
https://github.com/GTseq/GTseq-Pipeline
https://github.com/gjmckinney/GTscore
https://github.com/gjmckinney/GTscore/blob/master/GTScoreDocumentation%20V1.3.docx
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genotype rate lower than 40%, and over- and under-represented SNPs by discarding SNPs with 
disproportionally high or low numbers of reads. In the third optimization round, SNPs with 
genotype accuracy lower than 0.9 were also removed. For criteria applied to single SNPs, only 
those not passing the criteria were discarded while the other SNPs were retained. The criteria 
applied to single SNPs were estimated based on individuals with less than 30% missing data. The 
final (i.e., fourth) optimization run confirmed that the proportion of primer interactions was low 
and genotype accuracy was high. 
 
GT-seq panel validation 
Our set of testing samples for panel optimization included samples collected in 2015 (n=7), 2017 
(n=7), 2019 (n=19), and 2020 (n=7) from five sites across NM. Between 1-3 sites were included 
for each annual sample with ~10 samples per locality. Samples collected in the same year were 
combined and considered as a single “population”. The optimized GT-seq panel was used to 
prepare a library that included additional samples from 2019 (n=21) and 2020 (n=35). These 
samples were also used for nextRAD sequencing. In total, 96 samples (i.e., data from the fourth 
optimization round and the additional library) were sequenced using both nextRAD-seq and GT-
seq to validate the accuracy of the optimized panel for measuring and evaluating changes in 
genetic diversity when compared to the complete set of loci. Allele reads were counted with 
AmpliconRadCounter.pl script and the GTscore.R script was run to identify microhaplotypes. 
Individuals with missing data higher than 30% were removed. Monomorphic loci across the 96 
samples were removed. 
 
Next, using the 387 loci in the optimized GT-seq panel, we estimated locus-specific allelic 
richness (AR), observed heterozygosity (HO), expected heterozygosity (HE), inbreeding 
coefficient (FIS), and FST with the diveRsity R package. As previously described, we also tested 
if locus-specific HO and FST estimated between datasets were statistically different, using non-
parametric Kruskal-Wallis tests followed by a pairwise Wilcoxon test if the Kruskal-Wallis test 
was significant. All tests were performed in R. Pairwise FST between temporal collections was 
calculated. Temporal variation in genetic diversity was assessed using a Discriminant Analysis 
of Principal Components (DAPC) performed with adegenet v. 1.3-1 (Jombart, 2008; Jombart & 
Ahmed, 2011) R package. Missing data within each year was replaced using the Breiman’s 
regression random forest algorithm (Breiman, 2001) implemented in R package randomForest v. 
4.6–14 (Liaw & Wiener, 2002). Values of missing data were predicted from 1,000 
independently-constructed regression trees and 100 bootstrap iterations with default bootstrap 
sample size. An initial DAPC was performed using years as groups, without scaling allele 
frequencies, retaining all principal components (PCs) during the PCA step and all discriminant 
functions (DFs) during Discriminant Analysis step, and keeping other options as default. The a-
score method was used to select the optimal number of PCs to retain. The final DAPC was 
performed using the optimal number of PCs, two DFs, and using the other default options. The 
same analyses were performed with the nextRAD dataset (2,804 loci) using the same samples for 
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which we had GT-seq data, and with a nextRAD and a GT-seq dataset selecting randomly one 
SNP per locus. 
 
Results 
Microhaplotype identification and primer design 
After sequencing nextRAD libraries, demultiplexing the raw reads (i.e., DNA sequences prior to 
any filtering) and trimming, approximately 661.8 million (M) reads were retained with a mean of 
3.5 M sequences per individual (minimum = 1.6 thousand; maximum = 5.1 M). From these 
reads, 98.9% (minimum = 78.8%; maximum = 99.6%) were aligned to the peppered chub draft 
genome. 
 
FreeBayes identified 1.6 M raw variants (including SNPs, multi-nucleotide polymorphisms, 
indels, and other complex variants) across 189 individuals. A total of 2,804 loci containing 6,725 
SNPs across 187 individuals with less than 30% missing data passed all filtering steps and were 
used for primer design. Average depth per SNP was 46.1 (ranging from 20.4 to 98.5) and per 
individual was also 46.1 (ranging from 13.4 to 79.8). 
 
From the 2,804 loci retained, 1,850 had sufficient size for sequencing and the flanking regions 
for primer design were adequate. However, we were able to retain only 491 loci with suitable 
primer pairs that followed the primer design parameters and without off-target matches across 
the draft genome. 
 
When comparing the complete dataset with 2,804 loci and the reduced dataset for GT-seq panel 
optimization with 491 loci, we found the distribution of FST values was similar between both 
datasets (Kruskal-Wallis X2 = 0.45; p-value = 0.5), suggesting that this panel should be adequate 
to evaluate changes in allelic frequencies that reflect those genome-wide changes. On the other 
hand, HO was significantly lower in the reduced dataset (Kruskal-Wallis X2 = 33.91; p-value = 
5.77 x 10-9), which suggested that the genetic diversity (measured as heterozygosity) contained 
in the reduced panel is lower than genome-wide heterozygosity. This result was re-evaluated 
after the PCR multiplex optimization was completed. 
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Figure 1 – Box plots of FST and observed heterozygosity (HO) distributions across loci and the results of 
Kruskal-Wallis tests to assess if distributions were statistically different between datasets. (a) Comparison 
of the distribution of FST values between the complete microhaplotype dataset containing 2,804 loci 
(nextRAD_2804) and the microhaplotype dataset from 491 loci with suitable primer pairs for GT-seq 
(GT-seq_491). (b) Comparison of the distribution of HO values between the datasets. The dashed line in 
the box plot represents the mean of the distribution and the solid line represents the median. 
 
GT-seq library preparation and PCR multiplex optimization 
Sequenced reads from the first optimization round were dominated by primer interactions, which 
constituted 79. 9% of demultiplexed reads (Table 1). From the initial 491 loci, 17 primer pairs 
disproportionally contributed to the majority of the primer interactions (71.3%) and were 
removed. Genotype accuracy was relatively high (91.8%), but loci were not discarded based on 
genotype accuracy at this stage because the genotype rate across SNPs was relatively low 
(77.6%), including 16 loci containing 33 SNPs that were not genotyped. Also, the genotype rate 
across individuals was relatively low (75.1%), including 14 individuals (29.8% of the 
individuals) with more than 30% missing data (these were not used for genotype accuracy 
estimates). Because the library was dominated by primer interactions, sequencing depth of 
coverage was reduced, and consequently the genotyping rate was relatively low. Indeed, the 
average read depth was relatively low for most SNPs, ranging from 0 to 278.1; the average 
across SNPs was 31.19 and the median was 24.4. The proportion of primer interactions in the 
second multiplex PCR decreased to 30.2%. However, the average genotype accuracy decreased 
to 81.3%. Twenty primer pairs with low genotyping rate (<0.5), overamplifying, with high 
contribution to primer interactions, and/or off-target amplification in the second optimization 
round were discarded prior to preparation of the third GT-seq library. Although the proportion of 
primer interactions only slightly decreased (28.9%), this further improved the overall genotype 
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accuracy to 94.01%. The third optimization round identified additional 58 loci where all SNPs 
(85) had genotyping accuracy below 90%. Another 65 SNPs across 43 loci with genotyping 
accuracy below 90% were removed but the other SNPs for those loci were retained. The last 
round of optimization containing 396 loci confirmed that the proportion of primer interactions 
among the demultiplexed reads was relatively small (27.2%) and that the individual SNP 
genotype accuracy when compared to genotypes obtained from nextRAD was high (97.4%). The 
optimized GT-seq panel was comprised of 396 neutral loci containing 614 SNPs; 145 loci 
contained two to five SNPs (microhaplotypes) and 251 were single SNP loci. 
 
Table 1 – Summary results from GT-seq panel optimization. For each optimization round, the PCR 
multiplex performance was summarized with the overall proportion of reads resulting from primer 
interactions identified by GTseq_Primer-Interactions.pl script (Primer interactions), and the average SNP 
genotyping accuracy across individuals used in nextRAD-seq and for the GT-seq optimization with less 
than 30% missing data (Genotype accuracy). After the first optimization round, loci over- and under-
amplifying and loci with genotype accuracy for all SNPs below 90% were discarded. 
 

Optimization round 1st 2nd 3rd 4th 

PCR multiplex 
performance 

Primer/adapter interactions 79.9% 30.2% 28.9% 27.2% 

Average genotype accuracy 91.8% 81.3% 94.1% 97.4% 

Number of 
primer pairs 

(loci) excluded 

Primer interactionsa 17 4 0 0 
Primer/Probe <0.4a - 13 0 0 
Genotype rate <0.4b - 4 0 0 
Overamplificationb - 3 0 0 

Underamplificationb - 0 0 0 

Genotype accuracy <0.9b - - 58 0 

Total* 17 20 58 0 
Number of retained primer pairs (loci) 474 454 396 396 

a Criteria applied to entire locus. 
b Criteria applied to single SNPs. Loci were discarded if all SNPs did not pass the 
criterion. 
* Some loci fall within several categories and thus the total is not necessarily the sum of 
all numbers across categories listed above. 
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GT-seq panel validation 
Our optimized GT-seq panel contained nine monomorphic loci across the 96 test samples, 
resulting in 387 loci used for panel validation. From those samples, two were removed due to 
missing data higher than 30%. All loci showed less than 30% of missing data. A total of 94 
samples were genotyped with the nextRAD (2,804 loci) and the GT-seq (387 loci) approaches. 
Both datasets returned very similar estimates of FST (Figure 2b) and FIS (Table 2). Pairwise FST 
values were very close to zero regardless of the dataset (Table 3). Conversely, AR, HO and HE 
estimated with the GT-seq panel were slightly lower when compared to the nextRAD dataset 
(Table 2). However, when comparing the same metrics estimated with nextRAD using only 
single SNPs, and the GT-seq panel using both microhaplotypes and only one SNP per locus, the 
results were identical (Figure 2 and Table 2). In particular, HO was not statistically different 
when estimated from the nextRAD with single SNPs only and the GT-seq panel with 
microhaplotypes (Wilcoxon p = 0.79 after Bonferroni correction). 
 

 
 
Figure 2 – Box plots of observed heterozygosity (HO) and FST distributions across loci and the results of 
Kruskal-Wallis tests to assess if distributions were statistically different between datasets. (a) Comparison 
of the distribution of HO values between the complete microhaplotype dataset containing 2,804 loci 
(nextRAD_2804), the complete dataset after randomly selecting one SNP per locus 
(nextRAD_2804SNPs), the optimized GT-seq panel with 387 (GT-seq_387), and the GT-seq panel with 
one SNP per locus selected at random. (b) Comparison of the distribution of FST values between datasets. 
The dashed line in the box plot represents the mean of the distribution and the solid line represents the 
median. 
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Table 2 - Summary statistics of genetic diversity (allelic richness [AR], observed heterozygosity [HO], 
expected heterozygosity [HE], and inbreeding coefficient [FIS]) estimated with the same individuals from 
two temporal collections (2019 and 2020) using the complete nextRAD dataset (2,804 loci), the optimized 
GT-seq panel (396 loci), and excluding four loci from the GT-seq panel with missing data higher than 
30%. Average missing data (MD) per year for each dataset is also shown. 
 

Year Dataset AR HO HE FIS MD 

2015 
(n=7) 

nextRAD 2804 loci 2.01 0.29 0.29 0.02 5.7% 
nextRAD 2804 SNPs 1.51 0.17 0.17 0.01 4.5% 

GT-seq 387 loci 1.64 0.18 0.19 0.03 0.5% 
GT-seq 387 SNPs 1.45 0.13 0.14 0.05 0.3% 

2017 
(n=7) 

nextRAD 2804 loci 2.03 0.30 0.29 -0.01 2.3% 
nextRAD 2804 SNPs 1.53 0.18 0.17 -0.02 1.5% 

GT-seq 387 loci 1.64 0.20 0.19 -0.05 0.8% 
GT-seq 387 SNPs 1.46 0.15 0.14 -0.06 0.6% 

2019 
(n=38) 

nextRAD 2804 loci 2.21 0.29 0.32 0.07 3.8% 
nextRAD 2804 SNPs 1.60 0.17 0.18 0.06 2.6% 

GT-seq 387 loci 1.79 0.20 0.21 0.06 1.9% 
GT-seq 387 SNPs 1.56 0.15 0.16 0.05 1.6% 

2020 
(n=42) 

nextRAD 2804 loci 2.20 0.30 0.31 0.04 6.4% 
nextRAD 2804 SNPs 1.61 0.18 0.18 0.03 4.4% 

GT-seq 387 loci 1.77 0.19 0.21 0.10 2.0% 
GT-seq 387 SNPs 1.54 0.14 0.15 0.09 1.8% 
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Table 3 – Pairwise FST estimated between temporal collections using the complete nextRAD dataset with 
2,804 loci (nextRAD 2804 loci; top left quadrant), the nextRAD dataset with 1 SNP per locus randomly 
selected (nextRAD 2804 SNPs; top right quadrant); the GT-seq panel containing 387 loci (GT-seq 387 
loci; bottom left quadrant); the GT-seq panel with 1 SNP per locus randomly selected (GT-seq 387 SNPs; 
bottom right quadrant). 
 

nextRAD 
2,804 loci 2015 2017 2019 

nextRAD 
2,804 
SNPs 

2015 2017 2019 

2017 -0.002 - - 2017 0.002 - - 
2019 5.0×10-4 -2.0×10-4 - 2019 0.003 0.002 - 
2020 9.0×10-4 2.0x10-4 0.001 2020 0.002 7.0×10-4 0.002 

GT-seq 
387 loci 2015 2017 2019 

GT-seq 
387 SNPs 2015 2017 2019 

2017 -0.002 - - 2017 2.0×10-4 - - 
2019 0.002 -7.0×10-4 - 2019 0.002 0.002 - 
2020 -0.003 -0.001 8.0x10-4 2020 -0.003 0 3.0×10-4 

 
The DAPC results from the complete set of 2,804 loci (including microhaplotypes) revealed 
small deviations in genetic variability between 2019 and 2020 when compared to previous 
temporal collections (Figure 3a). The same deviation for 2019 was not detected with both 
datasets using only one SNP per locus (Figure 3b and 3d). However, the GT-seq panel including 
microhaplotypes was able to detect similar deviations as detected by the complete set of 2,804 
loci (Figure 3c), although the shifts detected with the GT-seq panel were more subtle. 
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Figure 3 – Discriminant analysis of principal components (DAPC) results for four temporal collections 
obtained from a) the complete nextRAD dataset with 2,804 loci, b) the nextRAD dataset with 1 SNP per 
locus randomly selected, c) the GT-seq panel containing 387 loci, d) the GT-seq panel with 1 SNP per 
locus randomly selected. The percentages on the x-axis refer to the proportion of variation explained by 
the first discriminant function. 
 
Discussion 
In this study, we developed a GT-seq panel for genetic monitoring of the federally endangered 
peppered chub. We used temporal data from archived collections spanning six years to design 
and optimize a panel of 396 loci, including microhaplotypes and single biallelic SNPs. We 
showed that the loci included in the optimized GT-seq panel were consistent with those obtained 
from nextRAD-seq, with high genotype concordance (97.4%). Such results are comparable with 
other studies developing GT-seq panels from reduced representation sequencing methods 
(Hayward et al., 2022; Schmidt et al., 2020; Setzke et al., 2021). The loci in the nextRAD dataset 
were chosen to include only neutral genetic variation, and thus the GT-seq panel also includes 
only neutral genetic variation. 
 
From the 396 loci included in the GT-seq panel, nine were monomorphic across the genotyped 
samples and were not included in the panel validation. These loci are likely monomorphic only 
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because of the relatively small number of samples. Increasing the sample size in future 
evaluations will likely identify other alleles, as suggested by nextRAD data. Once the panel is 
applied for genetic monitoring and more samples are genotyped it will be possible to evaluate 
whether those loci should be retained in the panel or discarded. Here we used the 387 
polymorphic loci for panel validation. 
 
FST and FIS were virtually identical regardless of the dataset. However, AR, HO, and HE estimates 
obtained with GT-seq panel (387 loci comprising 600 SNPs) were slightly smaller than those 
obtained from genome-wide microhaplotype data (2,804 loci comprising 6,725 SNPs). For 
example, the biggest differences in HO between both datasets were detected in 2015 and 2020 (in 
both cases HO[nextRAD]-HO[GT-seq] = 0.11; see Table 2). A similar range of differences were 
obtained in a GT-seq panel developed from RAD sequencing data (both including only biallelic 
SNPs) and were considered “comparable across sequencing methods” without further 
investigation (Garrett et al., 2024). In Garrett et al. (2024), discordances in genotype accuracy 
and FIS estimations were attributed to sequencing methodologies and genotyping methods. In our 
case, the explanation for differences in heterozygosity and allelic richness is that the genome-
wide data included a considerably higher proportion of microhaplotypes and consequently more 
variable loci (58.1% loci with more than two alleles) compared to the optimized GT-seq panel 
(31% of the loci had more than two alleles). Because microhaplotypes are intrinsically more 
variable than biallelic SNPs, metrics based on the number of alleles and heterozygosity can be 
directly impacted (Baetscher et al., 2018; Osborne et al., 2023). To evaluate the impact of the 
proportion of multi-allelic loci in our dataset, we compared the previous results with results from 
datasets where we retained a single SNP per locus (selected at random). Results showed no or 
only very small differences in genetic diversity estimated with the complete set of 2,804 single 
SNPs, the GT-seq panel including microhaplotypes, and the GT-seq panel retaining only single 
SNPs. In general, these results demonstrate that similar power to estimate genetic diversity is 
provided by the GT-seq panel and the genome-wide biallelic SNP dataset. 
 
Although locus variability can be increased by using microhaplotypes due to the higher number 
of SNPs per locus (Baetscher et al., 2018; McKinney et al., 2017), the ability to retain some 
SNPs in the GT-seq panel can be restricted by technical limitations (e.g., SNP position on the 
locus; genotype rate/errors) that result in a decreased number of SNPs per locus and 
consequently a potential decrease in some diversity metric estimations. In the present study, we 
were also constrained by a restricted number of initial loci that were compatible with GT-seq 
method, most likely due to reduced genetic diversity as consequence of recent population 
declines experienced by peppered chub (Caeiro-Dias et al., unpublished; Osborne et al., 2021). 
As such, it was not possible to include other loci to correct for the small bias in heterozygosity 
estimates. A way to circumvent similar issues in cases where genetic diversity is too low and the 
number of SNPs is predicted to be small, is to consider sequencing methods for SNP discovery 
the cover a higher proportion of the genome (e.g., Beemelmanns et al., 2024). Nevertheless, the 
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differences between nextRAD and GT-seq results (both with microhaplotypes) are small and 
consistent across temporal collections. Therefore, the optimized GT-sq panel can be considered a 
good representation of the genetic diversity obtained from the genome-wide nextRAD data. 
 
The results from the DAPC showed that the GT-seq panel including microhaplotypes had the 
power to discriminate small shifts in genetic variations across years, similarly to the complete 
nextRAD dataset. Those differences are not driven by small sample sizes from 2015 and 2017, as 
similar shifts were detected when using higher sample sizes for those years (Caeiro-Dias et al., 
unpublished). This confirms that the optimized GT-sq panel was also able to track known 
temporal genetic changes in peppered chub, making previous temporal collections directly 
comparable to results obtained from future collections. Similar conclusions were reached by 
applying the same methodology to develop a GT-seq panel for the Rio Grande silvery minnow 
(Hybognathus amarus; Caeiro-Dias et al., in review). Overall, our results show that the 
optimized GT-seq panel successfully captures the same signal as the complete nextRADseq data. 
 
Utility of the GT-seq panel for conservation of peppered chub 
The GT-seq panel developed here for peppered chub offers a low-cost and efficient genotyping 
tool for regular genetic monitoring. We plan to publish this research in one of the American 
Fisheries Society peer reviewed journals, including a file with primer sequences and another file 
with the in-silico probe sequences needed for SNP genotyping. As such, all information needed 
to use the GT-seq panel developed here will be publicly available. Peppered chub was recently 
listed as endangered (U. S. Fish and Wildlife Service, 2022) under the Endangered Species Act. 
A broodstock was established recently for developing captive rearing and breeding methods. 
Individuals produced in captivity could support future augmentation of the extant wild 
population and provide individuals for reestablishing the species where it has been recently 
extirpated. Understanding the effect of demographic changes on effective population size and 
genetic diversity is essential for developing management actions that aim to maintain and 
promote genetic diversity and avoid further losses. Maximizing effective population size and 
hence genetic diversity is critical for recovery of imperiled species. This approach is currently 
being employed in other species facing similar management actions (Osborne et al., in review). 
Furthermore, this GT-seq panel will be an important tool in future attempts to reestablish 
extirpated populations (e.g., in the Ninnescah and Arkansas rivers; Pennock et al., 2017; Perkin, 
Gido, Costigan et al., 2015), because it will allow the diversity of the founding population to be 
evaluated prior to introducing new individuals. Also, future genetic monitoring of those 
populations will be directly comparable with the source population. 
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