A Day in the Life of a New Mexico Food Web

Presentation & Photos by Storm W. Usrey Conservation Education Manager

Goal

 Students will understand what a food web is and how various species fit into this important biological concept, and as some populations increase or decrease, how this can impact other species within the web.

Objectives

- Students understand the importance of food webs.
- Students will be able to define key vocabulary words such as herbivore, omnivore and carnivore.
- Students will be able to define autotroph and heterotroph.
- Students will know how drastic species population changes can impact the food web.
- Students will know that toxins accumulated within the food web can possibly affect many species over time.

Definitions

- Autotroph organism capable of synthesizing its own food from inorganic material (e.g. plants photosynthesize their own food).
- Bioaccumulation gradual accumulation of a substance, such as pesticides or other chemicals, in an organism.
- Carnivore organism that eats mainly meat from other animals.
- Decomposers organism that break down dead or decaying organisms or waste.
- Detritivore organism that feeds on waste products or dead organic material (mostly animals).

Definitions

- Food Chain is a linear network of links in a food web.
- Food Web model depicting the many food chains linked together to show relationship of organisms in the ecosystem.
- Herbivore organism that eats only plants.
- Heterotroph organism that cannot produce its own food.
- Omnivore organism that eats plants and animals.
- Primary Consumer organism that feeds on primary producers. Organisms here are herbivores.

Definitions

- Producers organisms that make their own food.
- Saprovore organisms that feed on dead organic matter (mostly fungi).
- Secondary Consumer organism that feeds on primary consumers. Organisms here can be omnivores or carnivores.
- Tertiary Consumer organism that feeds on primary or secondary consumers. Organisms here are usually carnivores, but can be omnivores.
- Trophic level position an organism occupies in a food web.

- Food webs are found all around us in the world. It is very important to understand this key biological concept.
- Food webs show us how all species interact and how energy is transferred between trophic levels.
- Food chains are part of food webs; both are visual representatives of how organisms acquire their energy.

- The sun gives plants energy.
- Photosynthesis produces food for plants.
 Plants are autotrophs.
- And as you move up a food web or chain, organisms consume other organisms to obtain their energy. These organisms are called heterotrophs.

Photo credits: Andrew Teaschner

- Deer browse on leaves, turkeys eat acorns and insects, black bears eat berries and elk, cougars eat deer and bighorn sheep. These are examples of organisms consuming other organisms.
- Deer are herbivores, turkeys and bears are omnivores and cougars are carnivores.

- Decomposers are important as they break down dead material that plants use as food to obtain their nutrients.
- Can you name some decomposers in nature?

Hierarchy of a Food Web

- Examples of <u>producers</u> are trees, brush, flowers and grass.
- Examples of primary consumers would be elk, deer, grasshoppers and chipmunks.
- Examples of <u>secondary consumers</u> would be wild turkeys, lizards, foxes and coyotes.
- Examples of <u>tertiary consumers</u> would be cougars, black bears and bald eagles.
- Examples of <u>decomposers</u> would be maggots, earth worms and fungus.

Hierarchy of a Food Web

Tertiary Consumer Secondary Consumer

As consumers and even producers die they are broken down into nutrients by decomposers, which aid producers in growing.

Primary Consumer

Producer

Decomposers

Energy Transfer in a Food Web

- Only about 10% of energy is transferred between trophic levels. 90% is used by each trophic level for mechanical & heat processes.
- That is why when you look at a pyramid it is wider at the bottom than the top.
- There are more producers than herbivores, and more herbivores than omnivores/carnivores.

How Organisms make a living Heterotroph Heterotroph Heterotroph Autotroph Heterotroph

-vore in a Hierarchy

Examples of Organisms in a Food Web

Tertiary Consumers

Secondary Consumers Coyote image credit: Office.com

Primary Consumers

Grasshopper image credit: Office.com

Producers Producers Image credits: Office.com

Photo credit: Andrew Teaschner

Examples of Organisms in a Food Web

Tertiary Consumers

Secondary Consumers

Primary Consumers

Grasshopper image credit: Office.com

Bioaccumulation (Biomagnification)

- When pesticides containing DDT were used, the chemicals entered the water system.
- All species in the system from plankton to fish accumulated DDT
- This drastically impacted higher organisms on the food web such as bald eagles and ospreys when they fed on fish that had DDT.

Bioaccumulation (Biomagnification)

- Eagles would feed on fish and over time the accumulation of DDT infected fish meat eaten by eagles, impacting eagle populations.
- DDT affected bird egg development and egg shells were not developing correctly.
- Caused bald eagles populations to drastically decline.

Photo credits: Mark Watson

Thank You!

Please plan on going hunting, fishing, or trapping in the future and know that your purchase of a license for any of these activities helps fund wildlife & fisheries management in the Land of Enchantment!