SMALL-BODIED FISH MONITORING, SAN JUAN RIVER

September – October 2005

Yvette M. Paroz, David L. Propst, Stephanie M. Carman, and Nik Zymonas Conservation Services Division New Mexico Department of Game and Fish Santa Fe, New Mexico

July 2006

SAN JUAN RIVER BASIN RECOVERY IMPLEMENTATION PROGRAM U.S. FISH AND WILDLIFE SERVICE, REGION 2 ALBUQUERQUE, NEW MEXICO

EXECUTIVE SUMMARY

Monitoring of the small-bodied fish community of the San Juan River was conducted in September and October in 2005. A total of 6,915 fish were collected. Thirteen fish species were collected in the primary channel and ten in secondary channels and backwaters. Two Colorado pikeminnow were collected in the primary channel; one each in Reaches 2 and 3. One Colorado pikeminnow was collected in a secondary channel in Reach 4. One adult razorback sucker was collected in the primary channel in Reach 5.

A total of 5,975 m² of habitat was sampled in the primary channel, 1,040 m² in secondary channels, and over 460 m² in backwater areas. Primary channel samples were mainly collected in shoal and shore run habitats while secondary channel samples were mainly from run and mid-channel run habitats.

Fish density varied among reaches and channel types. Reaches 6 and 3 had the highest overall density of fishes in primary channel samples. Red shiner was numerically dominant in all primary channel reaches. Speckled dace was second-most abundant in Reaches 6 through 3. Channel catfish was second-most abundant in Reaches 2 and 1. The highest densities of bluehead sucker, flannelmouth sucker, and speckled dace were in Reach 6.

Reach 5 had the highest density of fishes in secondary channel samples. Only one secondary channel was sampled in Reach 6, which was numerically dominated by speckled dace. Speckled dace was also the most abundant species in Reach 3. Red shiner was the most abundant species in secondary channels of other reaches (5 and 4). Backwaters were numerically dominated by red shiner.

Small Bodied Monitoring -2005

ii

Overall fish densities in the 2005 were lower than in 2004 The only commonly collected species that increased in density from 2004 was channel catfish in secondary channels. Simple linear regression analysis of species density over time from 1998-2005 revealed a positive trend for flannelmouth sucker (R=0.695, p=0.056), and bluehead sucker (R=0.713, p=0.047) in the primary channel of the San Juan River.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	ii
LIST OF TABLES	v
LIST OF FIGURES	viii
INTRODUCTION	1
METHODS	3
RESULTS	7
DISCHARGE	7
PRIMARY CHANNEL SUMMARY	9
SECONDARY CHANNELS SUMMARY	13
OVERALL TRENDS IN PRIMARY AND SECONDARY CHANNELS	17
BACKWATER SUMMARY	21
BLUEHEAD SUCKER	22
FLANNELMOUTH SUCKER	24
SPECKLED DACE	26
RED SHINER	28
CHANNEL CATFISH	30
FATHEAD MINNOW	32
REACH 6—SUMMARY	35
REACH 5—SUMMARY	40
REACH 4—SUMMARY	45
REACH 3—SUMMARY	50
REACH 2—SUMMARY	55
REACH 1—SUMMARY	59
DENSITY VERSUS DISCHARGE	63
RARE FISHES 2005	67
SPECIES LONGITUDINAL DISTRIBUTION2005	67
MEAN TOTAL LENGTH 2005	69
ELECTROFISHING AND SEINING COMPARISON 2005	70
DISCUSSION	71
SUMMARY	72
PRIMARY CHANNEL	72
SECONDARY CHANNELS	73
BACKWATERS	74
COMMON SPECIES	75
LITERATURE CITED	76
ACKNOWLEDGEMENTS	76

LIST OF TABLES

Table 1	Mean daily discharge (cubic feet/second; cfs) of San Juan River during spring runoff and attributes of spring discharge, 1998 - 2005.	8
Table 2	Table 2. Mean daily discharge (cubic feet/second; cfs) of San Juan River during summer and attributes of summer discharge, 1994 – 2005.	8
Table 3	Mean daily discharge at Shiprock USGS Gage (936800) at the time of small bodied fish sampling for various reaches from 2000-2005.	9
Table 4	Species collected during small-bodied monitoring in San Juan River primary channel during autumn, 1998-2005.	10
Table 5	Fishes collected in San Juan River primary channel during autumn inventories, 1998-2005.	11
Table 6	Mesohabitat area sampled in San Juan River primary channel during autumn 2005 monitoring	12
Table 7	Species collected during small-bodied monitoring in San Juan River secondary channel during autumn, 1998- 2005.	14
Table 8	Fishes collected in San Juan River secondary channels during autumn inventories, 1998-2005.	15
Table 9	Mesohabitat area sampled in San Juan River secondary channel during autumn 2005 monitoring.	16
Table 10	Simple linear regression of overall density of commonly collected fishes from 1998 - 2005.	18
Table 11	Species collected in San Juan River backwaters during autumn, 1999 – 2005, inventories.	21
Table 12	Fishes collected in San Juan River backwaters during autumn monitoring, 1999-2005.	22
Table 13	Number and density of fishes in San Juan River primary channel in Geomorphic Reach 6 during autumn, 2000–2005.	36

Table 14	Number and density of fishes in San Juan River secondary channels in Geomorphic Reach 6 during autumn 2000-2005.	37
Table 15	Number and density (number/ m^2) of fishes in San Juan River backwaters in Geomorphic Reach 6 during autumn, 2000 – 2005.	39
Table 16	Number and density of fishes in San Juan River primary Channel in Geomorphic Reach 5, during autumn 2000- 2005.	41
Table 17	Number and density of fishes in San Juan River secondary channels in Geomorphic Reach 5, during autumn 1999-2005.	42
Table 18	Number and density of fishes in San Juan River backwaters, Geomorphic Reach 5, during autumn 2000- 2005.	44
Table 19	Number and density of fishes in San Juan River primary channel in Geomorphic Reach 4, during autumn 2000-2005.	46
Table 20	Number and density of fishes in San Juan River secondary channels in Geomorphic Reach 4, during autumn 2000-2005.	47
Table 21	Number and density of fishes in San Juan River backwaters in Geomorphic Reach 4, during autumn 2000-2005.	49
Table 22	Number and density of fishes in San Juan River primary channel, Geomorphic Reach 3, during autumn 2000-2005.	51
Table 23	Number and density of fishes in San Juan River secondary channels, Geomorphic Reach 3, during autumn 2000-2005.	52
Table 24	Number and density of fishes in San Juan River backwaters in Geomorphic Reach 3, during autumn 2000-2005.	54

Table 25	Number and density of fishes in San Juan River primary channel, Geomorphic Reach 2, during autumn 2000-2005.	56
Table 26	Number and density of fishes in San Juan River backwaters, Geomorphic Reach 2, during autumn 2000- 2005.	58
Table 27	Number and density of fishes in San Juan River primary channel, Geomorphic Reach 1, during autumn 2000-2005.	60
Table 28	Number and density of fishes in San Juan River backwaters, Geomorphic Reach 1, during autumn 1999- 2005.	62
Table 29	Regression analysis results for density of commonly collected fish species in the San Juan River versus average mean daily spring discharge, average mean daily summer discharge, and days mean daily summer discharge less than 500 cfs from 2000-2005.	64
Table 30	Rare fishes collected in autumn sampling of the San Juan River.	67
Table 31	Fish species collected in riffle habitats of the primary channel in Reaches 6, 4, and 3, San Juan River, 2005.	71

LIST OF FIGURES

Figure 1	Mean daily discharge (cubic feet/second; cfs) of San Juan River for 2005.	7
Figure 2	Distribution of sampled area and fishes from the primary channel of the San Juan in autumn 2005 among various mesohabitat categories.	13
Figure 3	Distribution of sampled area and fishes from secondary channels of the San Juan in autumn 2005 among various mesohabitat categories.	17
Figure 4	Overall density (total number/total area sampled) of commonly collected native fishes in autumn sampling of the San Juan.	18
Figure 5	Overall density (total number/total area sampled) of commonly collected nonnative fishes in autumn sampling of the San Juan.	19
Figure 6	Relative abundance of native and nonnative species collected in autumn sampling on the San Juan River from 1998-2005.	20
Figure 7	Average autumn densities of bluehead sucker in the primary and secondary channels of the San Juan River, 2000-2005.	23
Figure 8	Occurrence of bluehead sucker among mesohabitats in autumn sampling, San Juan River, 2005.	24
Figure 9	Average autumn densities of flannelmouth sucker in the primary and secondary channels of the San Juan River, 2000-2005.	25
Figure 10	Occurrence of flannelmouth sucker among mesohabitats in autumn sampling, San Juan River, 2005.	26
Figure 11	Average autumn densities of speckled dace in the primary and secondary channels of the San Juan River, 2000-2005.	27
Figure 12	Occurrence of speckled dace among mesohabitats in autumn sampling, San Juan River, 2005.	28
Figure 13	Average autumn densities of red shiner in the primary and secondary channels of the San Juan River, 2000-2005.	29

Figure 14	Occurrence of red shiner among mesohabitats in autumn sampling, San Juan River, 2005.	30
Figure 15	Average autumn densities of channel catfish in the primary and secondary channels of the San Juan River, 2000-2005.	31
Figure 16	Occurrence of channel catfish among mesohabitats in autumn sampling, San Juan River, 2005.	32
Figure 17	Average autumn densities of fathead minnow in the primary and secondary channels of the San Juan River, 2000-2005.	33
Figure 18	Occurrence of fathead minnow among mesohabitats in autumn sampling, San Juan River, 2005.	34
Figure 19	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 6 primary channel.	38
Figure 20	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 6 secondary channels.	38
Figure 21	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 5 primary channel.	43
Figure 22	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 6 secondary channels.	43
Figure 23	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 4 primary channel.	48
Figure 24	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 4 secondary channels.	48
Figure 25	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 3 primary channel.	53
Figure 26	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 3 secondary channels.	53
Figure 27	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 2 primary channel.	57
Figure 28	Relative abundance of native and nonnative fishes and assemblage diversity in Reach 1 primary channel.	61

Figure 29	Total sample density (total number of fish captured/total area sampled) and mean daily discharge during sampling for Reaches 6-4, San Juan River, New Mexico.	65
Figure 30	Total sample density (total number of fish captured/total area sampled) and mean daily discharge during sampling for Reaches 3-1, San Juan River, New Mexico.	66
Figure 31	Longitudinal density patterns of commonly collected native fish species in primary and secondary channels, San Juan River, 2005.	68
Figure 32	Longitudinal density patterns of commonly collected nonnative fish species in primary and secondary channels, San Juan River, 2005. Error bars represent standard error of sample densities.	69
Figure 33	Mean total length of commonly collected species in primary and secondary channels, San Juan River, 2005.	70

INTRODUCTION

The following is the annual report for the 2005 monitoring activities for smallbodied fishes. This project was initiated following completion of the San Juan River Seven Year Research Program in 1997, when the San Juan River Basin Recovery Implementation Program Biology Committee recognized the need to monitor San Juan River fish assemblages. Accordingly, autumn sampling of San Juan River small- and large-bodied fishes was conducted in 1998 following procedures used during the Seven Year Research Program. In 1999, autumn sampling of fish assemblages followed procedures detailed in the draft San Juan River Monitoring Plan and Protocols. Beginning in 2000, autumn fish assemblage monitoring followed the protocols detailed in the San Juan Monitoring Plan and Protocols (Propst et al. 2000). Electrofishing to collect small-bodied fishes was added to the sampling methods in 2004.

In 1998, primary and secondary channels sampling was limited to Reaches 5 through 2. In 1999, autumn monitoring of the primary channel was extended upstream to confluence of San Juan and Animas rivers near Farmington and downstream to Clay Hills Crossing. Also beginning in 1999, backwaters, as a distinct habitat, were sampled from Farmington to Clay Hills. Data on small-bodied fishes reported herein were collected from primary channel shoreline habitats, secondary channels, and backwaters from 2000 through 2005. Other than general reference to 1998 and 1999 collections, this annual report focuses on data collected from 2000 through 2005.

Autumn sampling of small-bodied fishes in San Juan River primary and secondary channels, as well as backwaters and embayments, was conducted to aid in characterization and quantification of responses of native and nonnative fishes to flow

1

regimes designed to mimic a natural hydrograph. Specific objectives of this monitoring effort include documenting occurrence of protected species (i.e., roundtail chub, Colorado pikeminnow, and razorback sucker), particularly age-0 individuals; characterizing mesohabitats occupied by protected species and other small-bodied fishes; determining effects of different flow regimes on autumn densities of commonly collected native and nonnative species; and comparing densities of commonly-collected species among primary and secondary channels. Data collected will be used to characterize long-term trends in status (abundance, population size-structure, and recruitment) of individual species.

METHODS

In 1998, autumn monitoring of small-bodied fishes in San Juan River primary and secondary channels and backwaters (including embayments) occurred from Shiprock, New Mexico (RM 149, Reach 5) downstream to Chinle Creek, Utah (RM 68, Reach 3). In 1999, autumn monitoring was extended upstream to the San Juan-Animas rivers confluence (RM 180, Reach 6) and downstream to Clay Hills Crossing (RM 3, Reach 1). The primary channel was sampled at each sampled secondary channel or at 3-mile intervals (designated miles) if no secondary channel was present in a 3-mile reach. In 1999, a secondary channel was sampled only if it occurred within the 1-mile reach to be sampled in every third mile. This protocol excluded a large proportion of secondary channels (30 to 50%, depending upon the starting point of the 3-mile sampling interval). To compensate, beginning in 2000, all secondary channels longer than 200 m having surface water were sampled. All backwaters (greater than 50 m²), regardless of occurrence within designated miles, were sampled.

From 2000 through 2005, small-bodied fishes were collected from primary channel habitats at 3-mile intervals. Starting point of 3-mile interval count cycled among years such that sampling would begin at RM 180 one year, RM 179 the next year, and RM 178 the third, and back to RM 180 the following year to repeat the cycle. All collections were made using seines hauls or kicking into a seine depending on habitat. In 2004 and 2005, additional collections were made by electrofishing into a bag seine in riffle, run, and shoal habitats. Primary channel electrofishing collections were made every six miles.

Small Bodied Monitoring -2005

3

Primary channel sample sites were about 200 m long (measured along shoreline). The length of secondary channel sample sites varied depending upon extent of surface water, but was normally 100 to 200 m. Within each site (primary and secondary channels), all mesohabitats (see Bliesner and Lamarra 2000 for definitions) present were sampled in rough proportion to their surface area within a site. Beginning in 2003, data (including fishes collected) from each sampled mesohabitat were recorded separately. Most primary channel mesohabitats sampled were along stream margins, but off-shore riffles and runs (<0.75 m deep) were also sampled. Secondary channel sampling was across the breadth of the wetted channel. All mesohabitats within each site were sampled and sampled area of each was roughly proportional to its total area within a site. Some mesohabitats (e.g., debris pools and riffle eddys) were sampled in greater proportion than their availability. Normally, at least five seine hauls was made at each sample site; however, if habitat was homogeneous, fewer seine hauls were made. All backwaters >50 m^2 associated with the primary channel were sampled and treated as separate sample units. Typically, two seine hauls were made in each backwater; one near its mouth and the second in its upper half. Fish collection data from embayments were grouped with backwater data in 2003, 2004, and 2005. Smaller backwaters were included within primary or secondary channel data sets, as backwater mesohabitats.

Fishes were collected with a drag seine (3.05 x 1.83 m, 3.2 mm mesh) from each mesohabitat. Each catch was inspected to determine presence of protected species and other native fishes. Total length (TL) of each native fish was determined, recorded, and the specimen released. Subsamples of at least 50 individuals of speckled dace collected were measured for each reach, the rest were counted and released. Nonnative fishes were

Small Bodied Monitoring -2005

4

fixed in 10% formalin and returned to the laboratory. Following specimen collection, seined area of each sampled mesohabitat was determined and recorded. Retained specimens were identified and enumerated in the laboratory. Total length was determined for all retained specimens, except collections having more than 250 specimens of a species. For these collections, lengths were obtained for a sub-sample (at least 200 specimens). Personnel of UNM-MSB, Division of Fishes, verified identification of retained protected species. All retained specimens were accessioned to the NMGF Collection of Fishes.

Attributes of spring and summer discharge were obtained from USGS Water Resources Data, New Mexico (1998 et seq.). Shiprock gauge (#09368000) data were used for all calculations. Spring was 1 March through 30 June and summer was from 1 July through 30 September. Species density data were segregated by Geomorphic Reach (Bliesner and Lamarra 2000). Total densities (number of fish per m^2) were determined by dividing total number of specimens by total area sampled within a reach. Simple linear regressions were used to assess trends in species density over time. Shannon-Weiner Diversity Index (H; proportional values transformed to natural log) values were calculated for each Geomorphic Reach each year. Regression analysis was used to compare spring and summer discharge attributes to autumn density of commonly collected secondary and primary channel species from 2000 through 2005. To reduce the effect of disproportionately large values, fish densities were log₁₀ (x + 1) transformed.

Mesohabitats were grouped into thirteen categories. Rapid-velocity mesohabitats included riffle, riffle-plunge, and riffle-run; moderate-velocity included run, mid-channel run, shore run, shoal, and pool-run; slow-velocity included riffle eddy, eddy, and pool;

and embayments and isolated pools were grouped with backwaters. For each mesohabitat class the percent composition of each species was plotted alongside the percent contribution of total sampled area to provide a crude estimate of habitat use patterns of each species.

To plot the abundance of species among years in primary and secondary channels, mean sample density (average autumn density) of each commonly collected species was calculated by averaging densities of each species from all samples (individual mesohabitats) within a reach. Standard error of density estimate of each species from each reach was calculated as the standard deviation of mean reach density divided by the square root of the number of mesohabitats sampled within respective reach. One way ANOVA was used to determine differences between species density in 2004 and 2005. For specific reaches, student's *t* tests were used to assess differences in species densities between 2004 and 2005.

RESULTS

DISCHARGE

The study area experienced relatively high flows in 2005. On May 25, 2005 mean daily discharge peaked at 13,200 cubic feet/second (cfs) (Figure 1). This fairly short but intense discharge peak provided eleven days over 10,000 cfs. Spring mean daily discharge in 2005 was higher than any year since 1998 (Table 1). The lowest spring mean daily discharge was in 2002. Prior to 2005, discharge exceeded 8000 cfs only one day; 2005 had 29 days.

Summer discharge was higher in 2005 than had been measured since 1999 when there were high flows throughout the summer (Table 2); the summer of 1999 had no days where mean discharge was less than 1000 cfs. There was no large summer flow spike (>4000 cfs) in 2005 and only one day had mean daily discharge greater than 3000 cfs. However, there were also fewer low discharge (<500 cfs) days in the summer of 2005 than the previous five years.

Figure 1. Mean daily discharge (cubic feet/second; cfs) of San Juan River for 2005. Data from USGS Shiprock gage (#09368000).

				WATEF	R YEAR			
MONTH	98	99	00	01	02	03	04	05
March	1141	869	941	1033	664	653	1071	1278
April	1425	1087	1652	1384	533	532	1842	3026
May	5250	3175	2311	4781	644	1621	2652	7983
June	3970	5716	2011	4760	433	1243	1836	6380
	• • • • -			• • • • •			1000	
Mean (cfs) – Mar-June	2947	2712	1729	2989	569	1015	1828	4667
Days Q >3,000 cfs	48	41	18	47	0	9	8	76
Days Q >5,000 cfs	24	26	1	29	0	0	0	50
Days Q >8,000 cfs	0	0	0	1	0	0	0	18
Days Q >10,000 cfs	0	0	0	0	0	0	0	11

Table 1. Mean daily discharge (cubic feet/second; cfs) of San Juan River during spring runoff and attributes of spring discharge, 1998 - 2005. Data from USGS Shiprock gage (#09368000).

Table 2. Mean daily discharge (cubic feet/second; cfs) of San Juan River during summer and attributes of summer discharge, 1994 – 2005. Data from USGS Shiprock gage (#09368000).

WATER YEAR										
MONTH	98	99	00	01	02	03	04	05		
July	1665	3116	324	690	378	575	585	1461		
August	959	5725	602	1132	368	642	398	966		
September	655	4157	649	552	1126	1286	1018	684		
Mean (cfs) – Jul-Sept	1089	4333	525	791	624	829	667	1037		
Days Q >5,000 cfs	0	31	0	0	2	2	0	0		
Days Q >4,000 cfs	1	42	0	0	2	3	1	0		
Days Q >3,000 cfs	1	71	0	0	2	3	1	1		
Days Q >2,000 cfs	11	89	0	5	3	3	6	6		
Days Q >1,000 cfs	37	92	1	18	7	13	11	42		
Days Q <1,000 cfs	55	0	91	74	85	79	80	49		
Days Q <750 cfs	42	0	80	59	79	67	70	40		
Days Q <500 cfs	15	0	45	23	74	44	49	17		
Number Q spikes	4	1	1	1	1	4	1	4		
Spike duration (days)	37	92	7	18	13	12	4	22		
Spike mean (cfs)	1802	4333	850	1596	2130	2645	2988	1389		

Mean daily discharge varied each year during sampling times (Table 3). The highest discharge was seen when sampling was conducted for the upper reaches in 2004.

In 2005, flows were quite low while sampling was conducted in the upper reaches but then increased to over 1000 cfs during the period that the lower reaches were sampled.

			Mean Daily Discharge					
Year	Sampling Dates	Reaches Sampled	Mean	Min	Max			
2000	October 2-10	4, 3, 2, 1	736	580	940			
	October 16-20	6, 5, 4	806	745	872			
2001	September 25 - October 3	4, 3, 2, 1	524	488	566			
	October 10-11	5, 4	753	732	774			
	October 23-25	6, 5	684	609	768			
2002	September 20 - 29	4, 3, 2, 1	408	277	779			
	October 7 - 11	6, 5, 4	557	523	639			
2003	September 22 - 26	6, 5, 4	360	309	446			
	October 6 - 14	4, 3, 2, 1	576	409	1020			
2004	September 20 - 24	6, 5, 4	2710	1600	4220			
	October 4 - 12	4, 3, 2, 1	815	619	987			
2005	September 19-23	6, 5, 4	419	322	605			
	October 3 - 12	4, 3, 2, 1	1165	912	1750			

Table 3. Mean daily discharge at Shiprock USGS Gage (936800) at the time of small bodied fish sampling for various reaches from 2000-2005.

PRIMARY CHANNEL SUMMARY

Five native and eight nonnative fish species were collected in the primary channel in 2005 (Table 4). One adult razorback sucker was collected by the small-bodied sampling crew. This was the first time a razorback sucker was collected in this study. Other native species included bluehead sucker, flannelmouth sucker, speckled dace, and Colorado pikeminnow. Two native species, roundtail chub and mottled sculpin, have not been collected since 1999. Nonnative red shiner, channel catfish, and fathead minnow were collected in all years of sampling. Additionally, black bullhead, common carp, plains killifish, western mosquitofish, and green sunfish were collected in 2005. Largemouth bass was collected in 2001 and 2004, but not 2005. Overall density of fishes collected in 2005 was less than 50% of the mean density from 1998-2004 collections. Red shiner continued to be the most commonly collected fish species in small-bodied sampling in the primary channel (Table 5). For the past three years (2003-2005), speckled dace was the second-most common. Collections in 1999 had the lowest density, while the 2000 collections yielded densities nearly three times as great as the mean. The amount of primary channel area sampled in 2005 was greater than the average amount sampled over the previous seven years.

Table 4. Species collected during small-bodied monitoring in San Juan River primary channel during autumn, 1998-2005. I = introduced and N = native. Six-letter code derived from first three letters of genus and second three from species.

COMMON	SCIENTIFIC	CODE	STATUS	1998	1999	2000	2001	2002	2003	2004	2005
Black bullhead	Ameiurus melas	AMEMEL	Ι					Х		Х	Х
Flannelmouth x bluehead	C. latipinnis x C. discobolus	LATDIS			Х				Х		
Bluehead sucker	Catostomus discobolus	CATDIS	Ν	Х	Х	Х	Х	Х	Х	Х	Х
Flannelmouth sucker	Catostomus latipinnis	CATLAT	Ν	Х	Х	Х	Х	Х	Х	Х	Х
Mottled sculpin	Cottus bairdi	COTBAI	Ν		Х						
Red shiner	Cyprinella lutrensis	CYPLUT	Ι	Х	Х	Х	Х	Х	Х	Х	Х
Common carp	Cyprinus carpio	CYPCAR	Ι		Х	Х		Х		Х	Х
Plains killifish	Fundulus zebrinus	FUNZEB	Ι	Х		Х	Х	Х	Х	Х	Х
Western mosquitofish	Gambusia affinis	GAMAFF	Ι	Х		Х	Х	Х	Х	Х	Х
Roundtail chub	Gila robusta	GILROB	Ν	Х	Х						
Channel catfish	Ictalurus punctatus	ICTPUN	Ι	Х	Х	Х	Х	Х	Х	Х	Х
Green sunfish	Lepomis cyanellus	LEPCYA	Ι		Х				Х	Х	Х
Largemouth bass	Micropterus salmoides	MICSAL	Ι				Х			Х	
Fathead minnow	Pimephales promelas	PIMPRO	Ι	Х	Х	Х	Х	Х	Х	Х	Х
Colorado pikeminnow	Ptychocheilus lucius	PTYLUC	Ν	Х						Х	Х
Speckled dace	Rhinichthys osculus	RHIOSC	Ν	Х	Х	Х	Х	Х	Х	Х	Х
Razorback sucker	Xyrauchen texanus	XYRTEX	Ν								Х
NATIVE			7	5	5	3	3	3	3	4	5
NONNATIVE			9	5	5	6	6	7	6	9	8

1998		1999		2000)	2001		2002		2003		2004		2005	
Species	Ν	Species	Ν	Species	Ν	Species	Ν	Species	Ν	Species	Ν	Species	N	Species	Ν
CYPLUT	590	CYPLUT	1071	CYPLUT	20114	CYPLUT	3102	CYPLUT	7124	CYPLUT	1715	CYPLUT	9924	CYPLUT	2497
RHIOSC	461	RHIOSC	395	GAMAFF	1025	RHIOSC	342	PIMPRO	1116	RHIOSC	511	RHIOSC	4690	RHIOSC	1234
ICTPUN	187	PIMPRO	48	PIMPRO	1490	PIMPRO	136	RHIOSC	533	ICTPUN	366	PIMPRO	1119	ICTPUN	401
PIMPRO	32	CATLAT	8	RHIOSC	161	GAMAFF	59	ICTPUN	231	CATLAT	142	ICTPUN	597	PIMPRO	281
CATLAT	8	ICTPUN	8	CATLAT	33	CATLAT	20	GAMAFF	165	PIMPRO	90	CATDIS	284	CATLAT	111
PTYLUC	4	GAMAFF	6	ICTPUN	35	CATDIS	8	CATLAT	141	GAMAFF	37	CATLAT	254	CATDIS	90
CATDIS	5	CATDIS	3	CATDIS	18	ICTPUN	13	CATDIS	61	CATDIS	28	GAMAFF	129	GAMAFF	16
GAMAFF	2	CYPCAR	1	CYPCAR	8	FUNZEB	3	CYPCAR	23	FUNZEB	21	FUNZEB	29	CYPCAR	3
GILROB	1	GILROB	1	FUNZEB	3	CYPCAR	1	FUNZEB	15	LEPCYA	2	CYPCAR	6	PTYLUC	2
FUNZEB	1	LATDIS	1			MICSAL	1	AMEMEL	4	LATDIS	1	MICSAL	4	AMEMEL	1
		LEPCYA	1									PTYLUC	4	FUNZEB	1
		COTBAI	1									AMEMEL	2	LEPCYA	1
												LEPCYA	1	XYRTEX	1
TOT N	1291		1544		22887		3685		9413		2913		17042		4639
AREA	1601		4883		4510		3091		3564		3935		7787		5975
DENSITY	0.81		0.32		5.07		1.19		2.64		0.74		2.19		0.78

Table 5. Fishes collected in San Juan River primary channel during autumn inventories, 1998 – 2005. Geomorphic Reaches 6 and 1 not sampled in 1998.

Sampled area in the primary channel was categorized into thirteen mesohabitats (Table 6). Nearly 30% of the sampled area was shoal habitat. Run, shore run, and midchannel run cumulatively comprised approximately 30% of the sampled area. Backwaters and isolated pools made up less than 5%. Reach 3 had the most primary channel area sampled (over 1600 m²), while only 123 m² was sampled in Reach 1.

Overall, approximately 30% of the speckled dace collected in the primary channel were found in riffle habitats (Figure 2). Forty percent of fathead minnows were found in backwaters associated with the primary channel. Very few red shiners were found in swift habitats. Bluehead sucker and flannelmouth sucker were fairly evenly distributed among several mesohabitat types.

									Mesoha	abitat					
				d Veloci	ty	1	Moderate	Velocity			Slow	Velocity	/	Backwater	
Reach	Reach Length (km)	Total area (m ²)	Riffle	Riffle run	Run	Mid channel run	Shore run	Shoal	Pool run	Riffle eddy	Eddy	Pool	Embayment	Backwater	Isolated pool
6	40.0	888.6	161.4	71.5	20.5	34.1	204.8	221.7		89.1	27.7	7.0	21.1	29.7	
5	38.4	955.6	103.9	97.5	35.9	29.7	107.8	311.2	25.8	75.8	98.3	33.0		36.7	
4	38.4	823.4	108.5	62.2	148.6	62.7	145.2	130.3		34.4	69.3	36.9	23.1	2.2	
3	62.4	1634.5	296.3	69.9	296.8	47.6	288.3	370.3		49.5	97.5	14.5	24.4	33.0	46.4
2	81.6	1461.2	86.7	36.0	31.9	26.4	378.2	568.0		41.8	241.2	31.2			19.8
1	27.2	123.1				14.3	25.7						13.2	83.1	
Ha	bitat Perc	ent	12.86%	5.66%	9.07%	3.65%	19.54%	27.21%	0.44%	4.94%	8.97%	2.08%	1.17%	3.14%	1.12%

Table 6. Mesohabitats (percent of total habitat sampled in respective reach) sampled in San Juan River primary channel during autumn 2005 monitoring. Mesohabitats are arranged from rapid (left) to slow (right) water velocity.

Figure 2. Distribution of sampled area and fishes from the primary channel of the San Juan in autumn 2005 among various mesohabitat categories.

SECONDARY CHANNELS SUMMARY

Most fish species sampled in secondary channels of the San Juan were also found in the primary channel (Table 7). Yellow bullhead was the only species collected exclusively in secondary channels. Common carp and plains killifish were not found in secondary channels in 2005. Colorado pikeminnow was found in secondary channels in each of the past two years. In total, four native and six nonnative species were found in secondary channels in 2005. Table 7. Species collected during small-bodied monitoring in San Juan River secondary channel during autumn, 1998-2005. I = introduced and N = native. Six-letter code derived from first three letters of genus and second three from species.

COMMON	SCIENTIFIC	CODE	STATUS	1998	1999	2000	2001	2002	2003	2004	2005
	Ameiurus										
Black bullhead	melas	AMEMEL	Ι	Х			Х	Х	Х	Х	Х
Yellow bullhead	Ameiurus natilis	AMENAT	Ι	Х			Х				Х
Bluehead sucker	Catostomus discobolus	CATDIS	Ν	Х	Х	Х	Х	Х	Х	Х	Х
Flannelmouth sucker	Catostomus latipinnis	CATLAT	Ν	Х	Х	Х	Х	Х	Х	Х	Х
Mottled sculpin	Cottus bairdi	COTBAI	Ν		Х						
Red shiner	Cyprinella lutrensis	CYPLUT	Ι	Х	Х	Х	Х	Х	Х	Х	Х
Common carp	Cyprinus carpio	CYPCAR	Ι	Х		Х	Х	Х	Х	Х	
Plains killifish	Fundulus zebrinus	FUNZEB	Ι	Х		Х	Х	Х	Х	Х	
Western mosquitofish	Gambusia affinis	GAMAFF	I	X	Х	X	X	X	X	X	Х
Roundtail	Gila robusta	GILROB	N	X	X	71	71	71	Α	Λ	71
Channel catfish	Ictalurus	ICTPUN	I	X	X	Х	Х	Х	Х	Х	Х
	punctatus Lepomis					Λ	Λ	Λ	Λ		Λ
Green sunfish Largemouth	cyanellus Micropterus	LEPCYA	Ι	Х	Х					Х	
bass	salmoides Oncorhynchus	MICSAL	Ι			Х	Х		Х	Х	
Rainbow trout	mykiss	ONCMYK	Ι				Х				
Fathead minnow	Pimephales promelas	PIMPRO	Ι	Х	Х	Х	Х	Х	Х	Х	Х
Colorado pikeminnow	Ptychocheilus lucius	PTYLUC	Ν	Х	Х	Х				Х	Х
Speckled dace	Rhinichthys osculus	RHIOSC	Ν	Х	Х	Х	Х	Х	Х	Х	X
				-	-			•	2		
NATIVE NONNATIVE			6 11	5 8	5 9	6 5	4 7	3 10	3 7	4 9	4 6

Similar to the primary channel, red shiner has been the most-commonly collected species in each year of sampling (Table 8) in secondary channels. Speckled dace was the second-most abundant species in 2005 collections. However, fathead minnow was the second-most abundant the previous five years (2000-2004). Total density in 2005 was

less than half that of average total density from 1998 through 2004. Area sampled in secondary channels in 2005 was less than previous years. The largest amount of secondary channel habitat sampled as well as the highest fish density was in 2000.

Table 8. Fishes collected in San Juan River secondary channel during autumn inventories, 1998 – 2005. Geomorphic Reaches 6 and 1 not sampled in 1998.

1998	1998			2000)	2001		2002		2003		2004	Ļ	2005	
Species	Ν														
CYPLUT	741	CYPLUT	272	CYPLUT	11135	CYPLUT	1847	CYPLUT	6424	CYPLUT	1627	CYPLUT	7080	CYPLUT	926
RHIOSC	597	RHIOSC	114	PIMPRO	1503	PIMPRO	226	PIMPRO	1781	PIMPRO	310	PIMPRO	2127	RHIOSC	171
PIMPRO	162	PIMPRO	20	GAMAFF	1314	RHIOSC	193	GAMAFF	470	RHIOSC	232	RHIOSC	1351	ICTPUN	114
ICTPUN	138	CATDIS	4	CYPCAR	309	GAMAFF	113	RHIOSC	224	CATLAT	153	GAMAFF	133	PIMPRO	108
GAMAFF	113	CATLAT	4	RHIOSC	158	CATLAT	27	CATLAT	99	ICTPUN	65	CATDIS	122	GAMAFF	45
CATLAT	13	ICTPUN	4	CATLAT	45	ICTPUN	20	FUNZEB	60	GAMAFF	32	CATLAT	122	CATLAT	24
FUNZEB	4	GAMAFF	3	ICTPUN	27	FUNZEB	19	CATDIS	53	CATDIS	24	ICTPUN	115	CATDIS	7
CYPCAR	2	COTBAI	2	CATDIS	17	CATDIS	11	ICTPUN	37	FUNZEB	11	FUNZEB	32	AMEMEL	3
GILROB	2	GILROB	1	MICSAL	9	AMEMEL	3	CYPCAR	27	AMEMEL	7	CYPCAR	10	AMENAT	1
CATDIS	2	PTYLUC	1	FUNZEB	5	CYPCAR	2	AMEMEL	8	CYPCAR	2	AMEMEL	6	PTYLUC	1
AMENAT	2	LEPCYA	1	PTYLUC	3	AMENAT	1			MICSAL	1	MICSAL	6		
PTYLUC	1					ONCMYK	1					PTYLUC	4		
LEPCYA	1					MICSAL	1					LEPCYA	1		
TOT N	1178		426		14508		2464		9183		2464		11109		1400
AREA	1904		1356		1914		1346		1468		1480		1802		1040
DENSITY	0.934		0.315		7.58		1.831		6.255		1.665		6.165		1.346

Nearly 40% of secondary channel area sampled was run, mid-channel run, and shore run habitat (Table 9). No embayment, backwater, or isolated pool habitats were sampled in association with secondary channels in 2005. The largest amount of secondary channel area sampled was in Reach 5. Very little secondary channel habitat was sampled in Reach 6. While shoal habitat made up over 13% of the area sampled in secondary channels, relatively few fish were collected there (Figure 3), unlike primary channel shoal habitats. Collections in secondary channel riffle habitats were mainly composed of speckled dace and bluehead sucker.

								Mesoł	nabitat					
			R	Rapid Velocity			Moderate Velocity				low Veloc	ity	Backwater	
Reach	Number of secondary samples	Total area (m ²)	Riffle	Riffle run	Run	Mid channel run	Shore run	Shoal	Pool run	Riffle eddy	Eddy	Pool	Embayment	Backwater
6	4	59.4	9.5			10.6		16.9	-		22.4			
5	26	475.4	47.1	42.9	54.1	75.2	24.9	88.5	26.7	46.4		69.7		
4	21	348.2	28.8	42.6	73	73.1	14.7	33		11.7		71.3		
3	9	157.1	18.5		68.6	17.6	20.7			28.4		3.3		
	Habitat Percen	ıt	9.99%	8.22%	18.82%	16.97%	5.79%	13.30%	2.57%	8.32%	2.15%	13.87%	0%	0%

Table 9. Mesohabitats (percent of total habitat sampled in respective reach) sampled in San Juan River secondary channels during autumn 2005 monitoring. Mesohabitats are arranged from rapid (left) to slow (right) water velocity.

Figure 3. Distribution of sampled area and fishes from secondary channels of the San Juan in autumn 2005 among various mesohabitat categories.

OVERALL TRENDS IN PRIMARY AND SECONDARY CHANNELS

Density of native fishes has been similar in primary and secondary channels since 1998 (Figure 4). Highest overall densities of speckled dace and bluehead sucker occurred in 2004 samples. Though 2005 densities were lower than in 2004, simple linear regressions indicate a trend of increasing densities for both flannelmouth sucker and bluehead sucker from 1998 through 2005 in primary channel samples (Table 10).

Figure 4. Overall density (total number/total area sampled) of commonly collected native fishes in autumn sampling of the San Juan.

collection year from 1998 - 2005.											
	Prir	nary	Secondary								
Species	R	р	R	р							
CYPLUT	-0.11	0.795	0.161	0.703							
PIMPRO	0.05	0.907	0.307	0.459							
ICTPUN	0.234	0.577	0.554	0.154							
RHIOSC	0.391	0.338	0.349	0.396							
CATLAT	0.695	0.056	0.611	0.108							
CATDIS	0.713	0.047	0.542	0.165							

Table 10. Simple linear regression of overall density of commonly collected fishes versus collection year from 1998 - 2005.

Overall density of commonly collected nonnative fish species has been variable over time (Figure 5). Trends in the densities of fathead minnow and red shiner have mirrored each other's annually alternating (increase/decrease) pattern since 1998. Channel catfish density was lowest in 1999 and has generally increased, especially in secondary channels. If 1998 densities are excluded from analysis, simple linear regression for 1999-2005 shows a significant increasing trend for density of channel catfish in both primary (R=0.843, p=0.017) and secondary channel (R=0.909, p=0.005) samples.

Figure 5. Overall density (total number/total area sampled) of commonly collected nonnative fishes in autumn sampling of the San Juan.

In 2005, approximately 45% of the fishes sampled in primary channels were native; while less than 20% of those sampled in secondary channels were native. Samples in 2000 had the lowest proportion of natives (Figure 6). Primary and secondary channels had similar native/nonnative composition from 1998 through 2002. Recent samples (2003 through 2005) indicated an increasing proportion of natives in the primary channel while their proportion in secondary channel samples has remained fairly constant.

Figure 6. Relative abundance of native and nonnative species collected in autumn sampling on the San Juan River from 1998-2005.

BACKWATER SUMMARY

Three native and seven nonnative fish species were collected in large backwaters of the San Juan in 2005 (Table 11). Colorado pikeminnow has not been collected in a backwater since 2000. Largemouth bass was collected only in backwaters in 2005; none was collected in primary or secondary channel areas this year.

Table 11. Species collected in San Juan River backwaters during autumn, 1999 - 2005, inventories. N = native and I = nonnative. Six-letter code derived from first three letters of genus and species of each taxon.

COMMON	SCIENTIFIC	CODE	STATUS	1999	2000	2001	2002	2003	2004	2005
Black bullhead	Ameiurus melas	AMEMEL	Ι		Х	Х	Х	Х		
Bluehead sucker	Catostomus discobolus	CATDIS	Ν		Х	Х	Х	Х	Х	Х
Flannelmouth sucker	Catostomus latipinnis	CATLAT	Ν	Х	Х	Х	Х	Х	Х	Х
Red shiner	Cyprinella lutrensis	CYPLUT	Ι	Х	Х	Х	Х	Х	Х	Х
Common carp	Cyprinus carpio	CYPCAR	Ι		Х	Х	Х		Х	Х
Plains killifish	Fundulus zebrinus	FUNZEB	Ι		Х	Х	Х		Х	Х
Western mosquitofish	Gambusia affinis	GAMAFF	Ι		Х	Х	Х	Х	Х	Х
Channel catfish	Ictalurus punctatus	ICTPUN	Ι	Х	Х	Х	Х	Х	Х	Х
Green sunfish	Lepomis cyanellus	LEPCYA	Ι			Х	Х	Х		
Bluegill	Lepomis macrochirus	LEPMAC	Ι		Х					
Largemouth bass	Micropterus salmoides	MICSAL	Ι		Х					Х
Fathead minnow	Pimephales promelas	PIMPRO	Ι	Х	Х	Х	Х	Х	Х	Х
Colorado pikeminnow	Ptychocheilus lucius	PTYLUC	Ν	Х	Х					
Speckled dace	Rhinichthys osculus	RHIOSC	Ν	Х	Х	Х	Х	Х	Х	Х
			4	2	4	2	2	2	2	2
NATIVE NONNATIVE			4 10	3	4 9	3	3 7	3	3	3
NUMINATIVE			10	3	9	9	/	6	6	7

Similar to primary and secondary channels, red shiner has been the most commonly collected species in backwaters in all years (Table 12). Fathead minnow has consistently been second-most abundant species in backwaters. In 2005, more flannelmouth suckers were collected in backwaters than primary or secondary channels. Flannelmouth sucker numbers in backwaters in 2005 was considerably greater than in previous years. Overall fish density in backwaters was relatively low in 2005 compared to the average from 1999 through 2005; similar densities were noted in 1999 and 2003. The amount of backwater area sampled in 2005 was slightly less than 80% of average area sampled in previous years.

1999		2000)	2001		2002	2	2003		2004	1	2005	1
Species	Ν	Species	Ν	Species	N	Species	Ν	Species	Ν	Species	Ν	Species	Ν
CYPLUT	438	CYPLUT	23898	CYPLUT	4408	CYPLUT	4453	CYPLUT	309	CYPLUT	1031	CYPLUT	536
PIMPRO	10	PIMPRO	878	PIMPRO	401	PIMPRO	1634	PIMPRO	129	PIMPRO	319	PIMPRO	122
RHIOSC	8	GAMAFF	659	CATDIS	71	GAMAFF	132	GAMAFF	17	FUNZEB	24	CATLAT	114
ICTPUN	2	AMEMEL	106	GAMAFF	39	CYPCAR	35	AMEMEL	12	GAMAFF	15	CATDIS	69
PTYLUC	1	ICTPUN	44	RHIOSC	19	RHIOSC	37	ICTPUN	10	ICTPUN	10	GAMAFF	16
		CYPCAR	46	CATLAT	6	ICTPUN	40	CATLAT	6	RHIOSC	10	RHIOSC	12
		CATLAT	33	CYPCAR	4	AMEMEL	14	CATDIS	3	CYPCAR	3	FUNZEB	3
		CATDIS	27	ICTPUN	4	CATLAT	22	RHIOSC	3	CATDIS	2	MICSAL	2
		MICSAL	24	FUNZEB	3	CATDIS	5	LEPCYA	1	CATLAT	1	CYPCAR	1
		RHIOSC	5	AMEMEL	3	FUNZEB	9					ICTPUN	1
		FUNZEB	3	LEPCYA	1	LEPCYA	3						
		LEPMAC	2										
		PTYLUC	1										
TOT N	459		25727		4957		6385		490		1415		876
AREA	242		1576		607		559		313		271		464
DENSITY	1.90		16.32		4.86		11.42		1.57		5.21		1.89

Table 12. Fishes collected in San Juan River backwaters during autumn inventories, 1999 – 2005.

BLUEHEAD SUCKER

The primary channel in Reach 6 continued to have the highest densities of bluehead sucker in 2005. However, none was collected in Reach 6 secondary channels in

2005, where relatively high densities were found in previous years. Bluehead sucker was also absent from primary channel collections in Reach 4 and Reach 1.

Generally, for the study area as a whole, density of bluehead sucker was not significantly different in 2005 than 2004 in primary ($f_{1,681}$ =2.176, p=0.141) but was significantly lower in secondary channels ($f_{1,175}$ =4.363, p=0.038). Considering each reach independently, bluehead sucker densities in 2005 were significantly lower than in 2004 in all reaches and channels (t > 1.75_(≥17df), p < 0.05), except Reach 6 primary and Reach 3 secondary sampling (Figure 7).

Figure 7. Average autumn densities of bluehead sucker in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

Bluehead sucker was found in a variety of mesohabitats in 2005 (Figure 8). Normally, specimens were collected in moderate- to fast-velocity habitats in the primary channel, but a few were collected in pools and embayments in Reach 6. Few (n = 7) bluehead suckers were collected in secondary channels in 2005.

Figure 8. Occurrence of bluehead sucker and area sampled among mesohabitats in autumn sampling, San Juan River, 2005.

FLANNELMOUTH SUCKER

Reach 6 also held the highest densities of flannelmouth sucker through the years (Figure 9). For most years and reaches, slightly higher densities of flannelmouth sucker were found in secondary channels than in the primary channel. No flannelmouth was

collected in Reach 1 in 2005. Combining all reaches, there were no significant differences between the density of flannelmouth sucker in 2004 and 2005 in primary $(f_{1,681}=1.344, p=0.247)$ or secondary channels $(f_{1,175}=2.239, p=0.136)$. However, densities of flannelmouth sucker were significantly lower in 2005 than in 2004 for Reaches 5, 4, and 1 primary channel and Reach 4 secondary channels $(t > 1.75_{(\geq 29df)}, p < 0.05)$.

Figure 9. Average autumn densities of flannelmouth sucker in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

In 2005, flannelmouth sucker was found in all mesohabitats sampled. Most were collected in moderate- to slow-velocities in Reach 6 (Figure 10). More flannelmouth suckers were sampled in the primary channel of Reach 6 than the rest of primary or secondary channel samples combined. Interestingly, nearly as many flannelmouth suckers were found in large Reach 6 backwaters as in the rest of the river. Only one flannelmouth sucker was collected in backwater habitat in Reaches 5 through 1.

Figure 10. Occurrence of flannelmouth sucker among mesohabitats in autumn sampling, San Juan River, 2005.

SPECKLED DACE

Speckled dace was found in primary and secondary channels in all reaches in 2005. For the study area as a whole, speckled dace density was significantly lower in 2005 than 2004 in both primary ($f_{1,681}$ =17.841, p<0.001) and secondary channels
(f_{1,175}=6.519, p=0.012). By reach, densities were lower in 2005 than in 2004, except for Reach 1 where density increased (Figure 11). Significant decreases were evident in primary and secondary channels of Reaches 5 and 6 and secondary channels in Reach 4 (t > $1.75_{(\geq 17df)}$, p < 0.05). The highest density of speckled dace in all Reaches was in 2004, except for Reach 1 and 2, when highest densities of speckled dace were in 2002.

Figure 11. Average autumn densities of speckled dace in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

Speckled dace was consistently found in riffle and riffle run mesohabitats in 2005 (Figure 12). However, they occurred in all other mesohabitats. Speckled dace had a higher likelihood of being sampled in swift water habitats in secondary channels, but in the primary channel they were more evenly distributed among mesohabitats.

Figure 12. Occurrence of speckled dace among mesohabitats in autumn sampling, San Juan River, 2005.

RED SHINER

Compared to 2004 levels, the density of red shiner decreased in 2005 in both in primary ($f_{1,681}$ =4.780, p=0.029) and secondary channels ($f_{1,175}$ =12.413, p=0.001);

particularly in Reaches 5 and 2 in the primary channel and all secondary channels (t >

 $1.75_{(\geq 17df)}$, p < 0.05). Highest densities of red shiner varied among Reaches 6 through 3 primary and secondary channels from 2000-2005 (Figure 13). Most reaches had their highest densities of red shiner in 2000, except for Reaches 3 and 2 where similarly high densities were found through 2002.

Figure 13. Average autumn densities of red shiner in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

In 2005, red shiner was more likely to be sampled in slower-velocity primary channel mesohabitats, although a few individuals were found in each type of mesohabitat sampled (Figure 14). Red shiner was distributed among slow, moderate, and rapid velocities in secondary channels. No red shiner was found in Reach 6 secondary channels in 2005.

Figure 14. Occurrence of red shiner among mesohabitats in autumn sampling, San Juan River, 2005.

CHANNEL CATFISH

Density of channel catfish was highest in Reaches 4 and 3 (Figure 15). Overall, there was no significant change in densities from 2004 to 2005 in primary ($f_{1,681}=0.106$, p=0.745) or secondary channels ($f_{1,175}=1.585$, p=0.210). In 2005, there was a significant

decrease in density from 2004 levels in Reach 5 primary channels (t = $3.12_{(106df)}$, p < 0.05). There was an increase in channel catfish density in Reach 3 secondary channels (t = $1.40_{(143df)}$, p < 0.10) in 2005. Only two catfish were collected in Reach 6 in the last six years, both in 2004 in the primary channel.

Figure 15. Average autumn densities of channel catfish in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

Channel catfish was collected in a variety of mesohabitats in 2005 (Figure 16). However, a majority of channel catfishes was found in moderate-velocity mesohabitats. At least a few channel catfish were collected in eddy habitat, if it was sampled in a given reach. Very few channel catfish (n = 3) were collected in Reach 5.

Figure 16. Occurrence of channel catfish among mesohabitats in autumn sampling, San Juan River, 2005.

FATHEAD MINNOW

Considering the entire study reach, 2005 density was somewhat, but not significantly, lower than 2004 density in primary ($f_{1,681}=2.682$, p=0.102) and secondary channels ($f_{1,175}=2.370$, p=0.125). Fathead minnow was irregularly collected in Reach 6

(Figure 17). Reach 5 had a significant decrease in fathead minnow densities in both primary and secondary channels from 2004 to 2005 (t > $1.75_{(\geq 49df)}$, p < 0.05). Reach 4 had a similar decrease in secondary channel densities (t > $3.25_{(60df)}$, p < 0.05). Generally, fathead minnow was more common in secondary channels.

YEAR

Figure 17. Average autumn densities of fathead minnow in the primary and secondary channels of the San Juan River, 2000-2005. Error bars represent one standard error. Note change in scale of y-axis.

Fathead minnow was not collected in riffles in any Reach in 2005 (Figure 18). Generally fathead minnow had a patchy distribution and was more likely to be sampled in slower velocity habitats. If backwater habitat was present, fathead minnow was present. No fathead minnow was found in Reach 6 secondary channels.

Figure 18. Occurrence of fathead minnow among mesohabitats in autumn sampling, San Juan River, 2005.

REACH 6 SUMMARY

Seven species were collected in the primary channel in Reach 6 in 2005 (Table 13). Red shiner was the most commonly collected, with speckled dace a close second. Those two species comprised nearly 80% of the fishes collected in 2005 in Reach 6. No catfish, bass, or carp was collected in Reach 6 primary channel in 2005. Total fish density was highly variable among years, and density in 2005 was less than half of mean density from 2000 through 2004. Relative abundance of native and nonnative fishes was similar in 2005 and diversity was slightly higher than in 2004 (Figure 19). In 2000, nearly all of the fishes collected in Reach 6 primary channels were nonnatives. The highest proportion of native fishes in the last six years of sampling was in 2003.

Only one small secondary channel was sampled in Reach 6 in 2005; less than one third of the area collected in 2004 (Table 14). Three speckled dace and one flannelmouth sucker were collected. It was the lowest density of fishes in six years for Reach 6 secondary channels. It was also the first time in six years that no nonnative fish was collected (Figure 20).

	2000			2001			2002			2003			2004			2005	
SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	Ν	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY
CYPLUT	2058	7.221	PIMPRO	51	0.108	CYPLUT	316	0.704	RHIOSC	123	0.302	CYPLUT	2530	2.377	CYPLUT	506	0.568
GAMAFF	202	0.712	RHIOSC	48	0.102	PIMPRO	229	0.51	CATLAT	101	0.248	RHIOSC	1914	1.798	RHIOSC	462	0.519
PIMPRO	38	0.133	CYPLUT	35	0.074	CATLAT	74	0.164	CYPLUT	55	0.136	PIMPRO	238	0.224	PIMPRO	90	0.101
RHIOSC	2	0.007	GAMAFF	26	0.055	GAMAFF	40	0.089	CATDIS	21	0.052	CATLAT	117	0.11	CATDIS	77	0.087
CATLAT	2	0.007	CATLAT	12	0.026	CATDIS	35	0.078	GAMAFF	19	0.047	CATDIS	94	0.088	CATLAT	73	0.082
CATDIS	1	0.004	CATDIS	5	0.011	RHIOSC	33	0.073	PIMPRO	14	0.034	GAMAFF	43	0.04	GAMAFF	4	0.005
FUNZEB	1	0.004	CYPCAR	1	0.002	FUNZEB	5	0.011				MICSAL	3	0.003	FUNZEB	1	0.001
			FUNZEB	1	0.002							FUNZEB	2	0.002			
												ICTPUN	2	0.002			
												CYPCAR	1	0.001			
												LEPCYA	1	0.001			
												LLICIA	I	0.001			
TOTAL N	2304			179			732			333			4945			1213	
AREA	285			471			449			407.2			1064			890	
DENSITY	8.084			0.38			1.786			0.818			4.64			1.36	
Н	0.401			1.649			1.435			1.498			1.076			1.270	

Table 13. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 6 during autumn, 2000–2005.

	2000			2001			2002			2003			2004			2005	
SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	Ν	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY
GAMAFF	87	0.713	GAMAFF	25	0.073	PIMPRO	415	4.428	CYPLUT	570	2.421	PIMPRO	638	3.426	RHIOSC	3	0.050
CYPLUT	58	0.475	RHIOSC	20	0.058	GAMAFF	269	2.892	CATLAT	100	0.425	RHIOSC	279	1.498	CATLAT	1	0.017
CYPCAR	9	0.074	CYPLUT	19	0.056	CYPLUT	246	2.631	RHIOSC	64	0.272	CYPLUT	269	1.445			
PIMPRO	5	0.041	PIMPRO	18	0.053	FUNZEB	36	0.387	PIMPRO	54	0.229	CATDIS	52	0.279			
MICSAL	4	0.033	CATDIS	9	0.026	CATLAT	29	0.312	GAMAFF	21	0.089	CATLAT	51	0.274			
RHIOSC	2	0.016	FUNZEB	2	0.006	CATDIS	27	0.289	CATDIS	19	0.081	GAMAFF	42	0.226			
CATLAT	1	0.008	MICSAL	1	0.003	RHIOSC	8	0.086	CYPCAR	2	0.008	FUNZEB	4	0.021			
CATDIS	1	0.008	ONCMYK	1	0.003	CYPCAR	5	0.053	MICSAL	1	0.004	MICSAL	4	0.021			
												CYPCAR	1	0.005			
TOTAL N	168			94			1035			831			1340			4	
AREA	122			342			93			235.4			186			59.4	
DENSITY	1.377			0.275			11.129			3.53			7.204			0.0168	
Н	1.203			1.649			1.434			1.09			1.402			0.563	

Table 14. Number and density (number/m²) of fishes in San Juan River secondary channel in Geomorphic Reach 6 during autumn, 2000–2005.

Figure 19. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 6 primary channels.

Figure 20. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 6 secondary channels.

After having no backwater sampled in Reach 6 in 2004, six were sampled in 2005 (Table 15). Red shiner was the most commonly collected species each year that backwaters were sampled. Flannelmouth sucker was never abundant in backwaters in previous years, but in 2005, one-hundred-thirteen individuals were collected in Reach 6 backwaters. Sixty-nine bluehead suckers were also found in 2005.

Table 15. Number and density (number/ m^2) of fishes in San Juan River backwaters in Geomorphic Reach 6 (RM 180 – RM 155) during autumn, 2000 – 2005.

	2000			2001		2002		2003		2004		2005	
SPECIES	N	DEN	SPECIES	Ν	DEN		SPECIES	N	DEN		SPECIES	N	DEN
						Ν				Ν			
CYPLUT	481	4.076	CYPLUT	708	23.6	0	CYPLUT	10	0.333	0	CYPLUT	399	2.375
PIMPRO	162	1.373	PIMPRO	191	6.367		PIMPRO	8	0.267		CATLAT	113	0.673
GAMAFF	66	0.56	CATDIS	70	2.333	В	CATLAT	2	0.067	В	PIMPRO	75	0.446
MICSAL	16	0.136	GAMAFF	25	0.833	Α	GAMAFF	2	0.67	А	CATDIS	69	0.411
CATDIS	6	0.051	FUNZEB	2	0.067	С				С	GAMAFF	12	0.071
CYPCAR	5	0.042	CYPCAR	1	0.033	К				K	RHIOSC	10	0.059
RHIOSC	2	0.017	RHIOSC	1	0.033	W				W			
CATLAT	2	0.017	CATLAT	1	0.033	Α				A			
FUNZEB	2	0.017	AMEMEL	1	0.033	Т				Т			
						Е				Е			
						R				R			
						S				S			
N Backwtr	3			2				2				6	
N FISH	741			1001				22				678	
AREA	118			30				30				168	
DENSITY	6.28			33.367				0.733				4.04	
Н	1.025			0.885				1.162				1.219	

REACH 5 SUMMARY

Density of fishes in 2005 in Reach 5 primary channel was the lowest in six years (Table 16), less than 20% of average density from 2000 through 2004. Red shiner was the most abundant fish in all years. Speckled dace has been second-most abundant for past three years. A single razorback sucker was collected for the first time in small-bodied monitoring. No carp, plains killifish, or largemouth bass was collected in Reach 5 primary channel in 2005. Nonnative fishes comprised nearly 90% of the sample in 2005 (Figure 21). Nonnatives have numerically dominated the collections (>70%) in Reach 5 for six years.

Density of fishes in Reach 5 secondary channels was also lower in 2005 than in any year since 2001 (Table 17). Red shiner and fathead minnow were the most commonly collected species for six years. No common carp, plains killifish, or largemouth bass was collected in 2005. For six years, nearly 90% of the collections were nonnative fishes in Reach 5 secondary channels (Figure 22). Lowest diversity was in 2000 and 2005, while highest diversity was found in 2001 and 2004. Colorado pikeminnow was collected in both primary and secondary channels of Reach 5 in 2004, but none was found in 2005.

Similar to 2004, seven species were collected in Reach 5 backwaters in 2005 (Table 18). No bluehead sucker or common carp was collected in 2005; plains killifish and flannelmouth sucker were collected. Fish density was the lowest in six years, with the second-greatest area sampled. Backwater area sampled was greatest in 2000. Red shiner and fathead minnow were the most commonly collected species from 2000 through 2005.

40

	2000			2001			2002			2003			2004			2005	
SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY	SPECIES	N	DENSITY
	5210	10.522		276	0.955	CVDI UT	1022	2 2 1 1	CVDI UT	262	0.020		2225	2.522	CVDI UT	525	0.5(0
CYPLUT GAMAFF	5219 250	10.522 0.504	CYPLUT RHIOSC	376 122	0.855	CYPLUT PIMPRO	1033 206	0.461	CYPLUT RHIOSC	363 49	0.929	CYPLUT RHIOSC	3325 1421	2.522 1.078	CYPLUT RHIOSC	535 72	0.560
RHIOSC	44	0.088	PIMPRO	122	0.277	GAMAFF	80	0.401	GAMAFF	15	0.123	PIMPRO	321	0.244	PIMPRO	61	0.073
PIMPRO	42	0.085	GAMAFF	19	0.043	RHIOSC	76	0.17	CATLAT	13	0.036	CATDIS	95	0.072	GAMAFF	9	0.009
CATLAT	10	0.02	CATDIS	2	0.005	CATDIS	10	0.022	ICTPUN	14	0.036	ICTPUN	84	0.064	CATLAT	6	0.006
CATDIS	6	0.012	ICTPUN	2	0.005	CATLAT	8	0.018	PIMPRO	7	0.018	GAMAFF	44	0.033	CATDIS	3	0.003
FUNZEB	1	0.002	CATLAT	1	0.002	ICTPUN	7	0.016	CATDIS	2	0.006	CATLAT	39	0.03	ICTPUN	1	0.001
			MICSAL	1	0.002	CYPCAR	2	0.005				FUNZEB	5	0.004	XYRTEX	1	0.001
												CYPCAR	3	0.002			
												PTYLUC	3	0.002			
												MICSAL	1	0.001			
TOTAL N	5572			537			1428			464			5341			688	
AREA	496			440			447			390.8			1318			955	
DENSITY	11.234			1.22			3.195			1.187			4.045			0.72	
Н	0.296			0.865			0.94			0.838			1.045			0.787	

Table 16. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 5 during autumn, 2000–2005.

	2000		2	2001		2	2002		2 2	2003			2004		2	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	Ν	DEN	SPECIES	N	DEN
CYPLUT	8984	22.074	CYPLUT	219	0.619	CYPLUT	2790	6.906	CYPLUT	426	1.41	CYPLUT	1723	6.680	CYPLUT	693	1.458
PIMPRO	1352	3.322	PIMPRO	38	0.107	PIMPRO	592	1.465	PIMPRO	143	0.473	PIMPRO	460	1.780	PIMPRO	59	0.124
GAMAFF	812	1.995	RHIOSC	35	0.099	GAMAFF	195	0.483	RHIOSC	81	0.268	RHIOSC	319	1.240	RHIOSC	50	0.105
CYPCAR	160	0.393	GAMAFF	29	0.082	CATLAT	51	0.126	ICTPUN	6	0.02	GAMAFF	39	0.150	GAMAFF	43	0.090
RHIOSC	48	0.118	FUNZEB	2	0.006	RHIOSC	49	0.121	GAMAFF	4	0.013	CATDIS	19	0.070	CATLAT	16	0.034
CATLAT	10	0.025	CATLAT	1	0.003	FUNZEB	16	0.04	CATDIS	3	0.01	CATLAT	15	0.060	CATDIS	3	0.006
CATDIS	8	0.02	ICTPUN	1	0.003	CATDIS	14	0.035	CATLAT	3	0.01	ICTPUN	9	0.030	ICTPUN	2	0.004
MICSAL	3	0.007				CYPCAR	11	0.027	FUNZEB	3	0.01	CYPCAR	7	0.030	AMEMEL	1	0.002
						AMEMEL	1	0.002				FUNZEB	7	0.030			
												PTYLUC	3	0.010			
												AMEMEL	2	0.010			
												LEPCYA	1	0.000			
												MICSAL	1	0.000			
Ν	11377			325			3719			669			2605			867	
IN	11377			525			5/19			009			2003			807	
AREA	407			354			404			302			258			475	
DENSITY	27.953			0.918			9.205			2.214			10.097			1.83	
Н	0.725			1.039			0.842			1.018			1.036			0.791	

Table 17. Number and density (number/ m^2) of fishes in San Juan River secondary channels in Geomorphic Reach 5 (RM 155 – RM 131) during autumn 2000 - 2005.

Figure 21. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 5 primary channel.

Figure 22. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 5 secondary channels.

	2000		2	2001			2002		4	2003		2	2004		2	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	Ν	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT	4965	15.965	CYPLUT	909	5.476	CYPLUT	875	8.413	PIMPRO	101	0.842	CYPLUT	262	7.005	CYPLUT	93	0.427
PIMPRO	274	0.881	PIMPRO	65	0.392	PIMPRO	250	2.404	CYPLUT	98	0.817	PIMPRO	36	0.963	PIMPRO	33	0.151
GAMAFF	118	0.379	RHIOSC	3	0.018	GAMAFF	12	0.115	CATLAT	4	0.033	RHIOSC	6	0.16	GAMAFF	4	0.018
CATDIS	8	0.026	CATDIS	1	0.006	CATLAT	7	0.01	GAMAFF	4	0.033	GAMAFF	3	0.08	FUNZEB	3	0.014
CYPCAR	4	0.013	CATLAT	1	0.006	CATDIS	1	0.01	CATDIS	2	0.017	CATDIS	2	0.053	RHIOSC	2	0.009
CATLAT	3	0.01	GAMAFF	1	0.006	CYPCAR	1	0.01	RHIOSC	1	0.008	CYPCAR	2	0.053	CATLAT	1	0.005
RHIOSC	1	0.003	LEPCYA	1	0.006	FUNZEB	1	0.01				ICTPUN	1	0.027	ICTPUN	1	0.005
ICTPUN	1	0.003															
MICSAL	1	0.003															
N Backwtr	9			6			6			5			2			5	
Ν	5375			983			1147			210			312			137	
AREA	311			166			104			120			37.4			218	
DENSITY	17.289			3.944			11.058			1.75			8.342			0.628	
Н	0.333			0.31			0.636			0.928			0.6			0.922	

Table 18. Number and density (number/ m^2) of fishes in San Juan River backwaters in Geomorphic Reach 5 (RM 155 – RM 131) during autumn 2000 - 2005.

REACH 4 SUMMARY

Only five species were collected in Reach 4 primary channel in 2005, the fewest in six years (Table 19). Fish density was also lower than in previous years. Red shiner was the most abundant species for six years; speckled dace were second-most abundant. No bluehead sucker was captured in the primary channel of Reach 4 in 2005. The proportion of native species and assemblage diversity has increased each of the past six years (Figure 23).

Ten species were collected in Reach 4 secondary channels in 2005, including one Colorado pikeminnow (Table 20). Colorado pikeminnow had not been collected in Reach 4 secondary channels since 2000. Fish density was lower in 2005 that in preceding 5 years. Red shiner was the most commonly collected species in all years. Fathead minnow second-most common from 2001 through 2004; however, channel catfish ranked second in 2005. Proportion of native fishes was higher in 2005 than in previous 5 years (Figure 24). Though not consistent, it appears that diversity is increasing over time.

Only one backwater was sampled in Reach 4 in 2005 (Table 21). Three red shiner and one fathead were found in 19 m² of habitat. This was the lowest fish density and least amount of habitat sampled in Reach 4 backwaters in six years. The highest fish density in backwaters was in 2000 when 9 backwaters were sampled. Fathead minnow and red shiner were the most commonly collected species in all years.

45

2	2000		2	2001		2	2002			2003		,	2004		2	2005	
SPECIES	N	DEN															
CYPLUT	3616	3.649	CYPLUT	1007	3.334	CYPLUT	1704	3.221	CYPLUT	370	0.698	CYPLUT	1955	1.252	CYPLUT	278	0.338
RHIOSC	50	0.051	RHIOSC	62	0.205	PIMPRO	151	0.327	RHIOSC	127	0.24	RHIOSC	641	0.41	RHIOSC	234	0.284
GAMAFF	11	0.011	PIMPRO	12	0.04	RHIOSC	92	0.2	ICTPUN	37	0.07	PIMPRO	419	0.268	ICTPUN	80	0.097
CYPCAR	4	0.004	GAMAFF	5	0.017	ICTPUN	34	0.074	PIMPRO	30	0.057	ICTPUN	119	0.076	PIMPRO	24	0.029
CATLAT	4	0.004	CATLAT	2	0.007	GAMAFF	17	0.037	CATLAT	5	0.009	CATLAT	34	0.022	CATLAT	6	0.007
ICTPUN	4	0.004	FUNZEB	2	0.007	CATLAT	17	0.037	FUNZEB	4	0.008	GAMAFF	27	0.017			
PIMPRO	3	0.003				CATDIS	7	0.015	CATDIS	2	0.004	CATDIS	19	0.012			
CATDIS	1	0.001				CYPCAR	4	0.009	LATDIS	1	0.002	FUNZEB	18	0.012			
FUNZEB	1	0.001				FUNZEB	2	0.004	LEPCYA	1	0.002	AMEMEL	1	0.001			
N	2704			1000			2020						2024			(22	
Ν	3794			1090			2029			577			3234			622	
AREA	991			302			461			530			1562			823	
DENSITY	3.828			3.609			4.401			1.091			2.07			0.755	
Н	0.129			0.334			0.671			1.065			1.163			1.162	

Table 19. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 4 during autumn 2000 - 2005.

	2000		2	2001		2	2002		2	2003			2004		2	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT CYPCAR GAMAFF	2792 118 77	5.132 0.217 0.141	CYPLUT PIMPRO RHIOSC	708 131 43	2.192 0.406 0.133	CYPLUT PIMPRO RHIOSC	1502 509 24	4.457 1.51 0.071	CYPLUT PIMPRO CATLAT	467 102 48	0.981 0.214 0.101	CYPLUT PIMPRO RHIOSC	3943 1008 578	5.356 1.369 0.785	CYPLUT ICTPUN RHIOSC	179 63 62	0.514 0.181 0.178
PIMPRO RHIOSC	74 31	0.136 0.057	GAMAFF FUNZEB	38 16	0.118 0.05	CATLAT CYPCAR	10 8	0.03 0.024	RHIOSC ICTPUN	44 25	0.092 0.053	ICTPUN GAMAFF	58 46	0.079 0.062	PIMPRO CATLAT	41 3	0.118 0.009
MICSAL CATLAT PTYLUC	11 9 3	0.02 0.016 0.005	CATLAT ICTPUN CATDIS	4 3 1	0.012 0.009 0.003	CATDIS ICTPUN AMEMEL	8 6 3	0.024 0.018 0.009	FUNZEB AMEMEL GAMAFF	7 4 4	0.015 0.008 0.008	CATDIS CATLAT FUNZEB	34 26 21	0.046 0.035 0.029	AMEMEL GAMAFF AMENAT	2 2 1	0.006 0.006 0.003
CATDIS ICTPUN	2 2	0.004 0.004	AMENAT CYPCAR	1 1	0.003 0.003	GAMAFF FUNZEB	3 2	0.009 0.006	CATDIS	2	0.004	AMEMEL CYPCAR	4 2	0.005 0.003	CATDIS PTYLUC	1 1	0.003 0.003
FUNZEB	I	0.002										MICSAL	1	0.001			
N	3111			946			2075			703			5722			355	
AREA DENSITY	544 5.719			323 2.929			3376.22			476 1.477			736 7.774			348 1.02	
Н	0.483			0.892			0.741			1.149			0.966			1.354	

Table 20. Number and density (number/m²) of fishes in San Juan River secondary channel in Geomorphic Reach 4 during autumn 2000 - 2005.

Figure 23. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 4 primary channel.

Figure 24. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 4 secondary channels.

	2000		2	2001			2002			2003			2004		2	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT PIMPRO	4965 274	15.965 0.881	CYPLUT PIMPRO	909 65	5.476 0.392	CYPLUT PIMPRO	875 250	8.413 2.404	PIMPRO CYPLUT	101 98	0.842	CYPLUT PIMPRO	262 36	7.005	CYPLUT PIMPRO	3 1	0.157 0.052
GAMAFF CATDIS CYPCAR	118 8 4	0.379 0.026 0.013	RHIOSC CATDIS CATLAT	3 1 1	0.018 0.006 0.006	GAMAFF CATLAT CATDIS	12 7 1	0.115 0.010 0.010	CATLAT GAMAFF CATDIS	4 4 2	0.033 0.033 0.017	RHIOSC GAMAFF CATDIS	6 3 2	0.160 0.080 0.053			
CATLAT RHIOSC	3	0.010 0.003	GAMAFF LEPCYA	1	0.006	CYPCAR FUNZEB	1	0.010 0.010	RHIOSC	1	0.008	CYPCAR ICTPUN	2 1	0.053 0.027			
ICTPUN MICSAL	1 1	0.003 0.003															
BKWS N	9			6			6			5			2			1	
Ν	5375			983			1147			210			312			4	
AREA	311			166			104			120			37.4			19.1	
DENSITY	17.289			3.944			11.058			1.750			8.342			0.209	
Н	0.333			0.310			0.636			0.928			0.600			0.562	

Table 21. Number and density (number/m²) of fishes in San Juan River backwaters in Geomorphic Reach 4 during autumn 2000 - 2005.

REACH 3 SUMMARY

Nine species were collected in Reach 3 primary channel in 2005, including one Colorado pikeminnow (Table 22). Red shiner and speckled dace were the most commonly collected species four out of the last six years. Fish density in Reach 3 primary channel was lower in 2005 than in previous 5 years. Highest fish densities were found in 2002. The area sampled in 2005 was the second-greatest in six years of sampling; greatest was in 2004. Relative abundance of native and nonnative species and species diversity was similar in 2004 and 2005 (Figure 25).

For the first time in six years, speckled dace was the most commonly collected species in Reach 3 secondary channels in 2005 (Table 23). However, red shiner and channel catfish were nearly as common. The area sampled in 2005 in Reach 3 secondary channels was the lowest in six years and density was second-lowest among monitoring years. The lowest density was measured in 2003, highest in 2000. The proportion of native to nonnative species was higher in 2005 than the previous five years of sampling, and assemblage diversity was highest in 2005 (Figure 26).

Only one backwater was sampled in Reach 3 in 2005 (Table 24). Ten red shiner, two fathead, and a common carp were collected in less than 10 m². This was less than 5% of the average backwater area sampled in Reach 3. Diversity in 2005 was also lower than previous years. Red shiner has been the most commonly collected species since 2000. Fathead minnow was second-most common 4 of 6 years.

50

	2000			2001			2002			2003			2004		2	2005	
SPECIES	Ν	DEN	SPECIES	N	DEN	SPECIES	Ν	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT GAMAFF PIMPRO RHIOSC CATLAT ICTPUN CATDIS CYPCAR	3247 182 69 48 14 7 3 3	3.286 0.184 0.070 0.049 0.014 0.007 0.003 0.003	CYPLUT RHIOSC PIMPRO GAMAFF CATLAT ICTPUN	1298 93 43 11 3 2	1.940 0.139 0.064 0.016 0.005 0.003	CYPLUT PIMPRO RHIOSC ICTPUN GAMAFF CATLAT CYPCAR FUNZEB CATDIS AMEMEL	3162 413 269 55 25 21 13 8 4 2	3.639 0.475 0.310 0.061 0.028 0.024 0.014 0.009 0.004 0.002	CYPLUT RHIOSC ICTPUN PIMPRO CATLAT FUNZEB CATDIS GAMAFF	719 181 117 37 12 12 2 2	0.668 0.168 0.109 0.034 0.011 0.011 0.002 0.002	CYPLUT RHIOSC ICTPUN PIMPRO CATLAT CATDIS GAMAFF FUNZEB CYPCAR	1425 639 205 130 55 39 9 4 2	0.690 0.309 0.099 0.063 0.026 0.019 0.004 0.002 0.001	CYPLUT RHIOSC ICTPUN PIMPRO CATLAT CATDIS GAMAFF AMEMEL PTYLUC	928 409 147 91 20 9 2 1 1	0.568 0.250 0.090 0.056 0.012 0.006 0.001 0.001 0.001
N AREA	3573 988			1450 669			3972 869			1082 1077			2508 2066			1608 1635	
DENSITY H	3.616 0.326			2.167 0.339			4.571 0.560			1.005 1.050			1.214 1.212			.984 1.148	

Table 22. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 3 during autumn 2000 - 2005.

	2000		2	2001		2	2002			2003		,	2004			2005	
SPECIES	Ν	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT GAMAFF RHIOSC PIMPRO CATLAT	4885 338 77 72 25	5.073 0.351 0.080 0.75 0.026	CYPLUT RHIOSC PIMPRO CATLAT GAMAFF	901 95 39 22 21	1.347 0.142 0.058 0.033 0.031	CYPLUT PIMPRO RHIOSC ICTPUN CATLAT	1886 265 143 31 9	3.742 0.526 0.283 0.061 0.018	CYPLUT RHIOSC ICTPUN PIMPRO AMEMEL	164 43 34 11 3	0.351 0.092 0.073 0.024 0.006	CYPLUT RHIOSC ICTPUN CATLAT PIMPRO	1145 175 48 30 21	2.129 0.325 0.071 0.056 0.039	RHIOSC CYPLUT ICTPUN PIMPRO CATLAT	56 54 49 8 4	0.356 0.344 0.312 0.051 0.025
ICTPUN CYPCAR CATDIS FUNZEB	25 22 6 3	0.027 0.023 0.006 0.003	ICTPUN AMEMEL CYPCAR CATDIS	16 2 1 1	0.024 0.003 0.001 0.001	FUNZEB CATDIS AMEMEL CYPCAR GAMAFF	6 4 3 3	0.012 0.008 0.008 0.006 0.006	GAMAFF CATLAT FUNZEB	3 2 1	0.064 0.004 0.002	CATDIS GAMAFF	17 6	0.032 0.011	CATDIS	3	0.019
N	5456			1099			2354			261			1442			174	
AREA	963			669			504			467			537			157	
DENSITY	5.666			1.643			4.671			0.559			2.685			1.108	
Н	0.351			0.568			0.540			1.149			0.770			1.383	

Table 23. Number and density (number/m²) of fishes in San Juan River secondary channel in Geomorphic Reach 3 during autumn 2000 - 2005.

Figure 25. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 3 primary channel.

Figure 26. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 3 secondary channels.

2	2000			2001		2	2002		2	2003		2	2004		2	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT GAMAFF	2606 267	7.642 0.783	CYPLUT PIMPRO	2053 104	12.293 0.623	CYPLUT PIMPRO	1881 674	8.214 2.943	CYPLUT GAMAFF	63 11	1.340 0.234	CYPLUT PIMPRO	763 281	3.484 1.283	CYPLUT PIMPRO	10 2	1.053 0.211
PIMPRO AMEMEL	83 106	0.243 0.311	GAMAFF RHIOSC	12 3	0.072	GAMAFF RHIOSC	45 28	0.196	PIMPRO ICTPUN	3 2	0.064 0.043	FUNZEB GAMAFF	24 12	0.110	CYPCAR	1	0.105
CATLAT CYPCAR ICTPUN	5 4 2	0.015 0.012 0.006	CYPCAR ICTPUN FUNZEB	1 1 1	0.006 0.006 0.006	ICTPUN CYPCAR AMEMEL	22 17 6	0.096 0.074 0.026	AMEMEL RHIOSC	1	0.021 0.021	ICTPUN RHIOSC CATLAT	9 4 1	0.041 0.018 0.005			
PTYLUC FUNZEB	1 1	0.003	TOTIELD	1	0.000	CATLAT FUNZEB	6 5	0.026				CYPCAR	1	0.005			
						LEPCYA CATDIS	2 1	0.009 0.004									
BKWS N	8			8			8			2			5			1	
Ν	3072			2175			2687			81			1095			13	
AREA DENSITY	341 9.009			167 13.024			229 11.734			47 1.723			219 5.000			9.5 1.368	
Н	0.447			0.190			0.582			0.789			0.807			0.299	

Table 24. Number and density (number/m²) of fishes in San Juan River backwaters in Geomorphic Reach 3 during autumn 2000 - 2005.

REACH 2 SUMMARY

Ten species were collected in Reach 2 primary channel, the most in six years of sampling (Table 25). Included was a Colorado pikeminnow, the first collected by smallbodied sampling in Reach 2. Red shiner and channel catfish were the most commonly collected species for each of the past 4 years. In 2005, more area was sampled than in any previous year, but the second-lowest density was in 2005. Highest fish density was in 2000. The proportion of natives has remained relatively constant (approximately 10%) for the immediate past four years (Figure 27). Species diversity has been on an increasing trend since 2000.

Two backwaters were sampled in Reach 2 in 2005 (Table 26). Three species: red shiner, fathead minnow, and largemouth bass were found. Red shiner and fathead minnow were the most commonly collected species in Reach 2 backwaters in 5 of the 6 years. In 2005, backwater fish density was slightly higher than the previous two years sampling.

2	2000		2	2001		2	2002		2	2003			2004		,	2005	
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT GAMAFF ICTPUN	2310 44 20	1.577 0.030 0.014	CYPLUT RHIOSC PIMPRO	638 18 16	0.637 0.018 0.016	CYPLUT ICTPUN RHIOSC	407 105 43	0.380 0.098 0.040	ICTPUN CYPLUT RHIOSC	162 132 29	0.141 0.115 0.086	CYPLUT ICTPUN RHIOSC	546 149 73	0.466 0.127 0.062	CYPLUT ICTPUN RHIOSC	210 169 53	0.142 0.114 0.036
PIMPRO RHIOSC CATDIS	19 16 6	0.013 0.011 0.004	ICTPUN GAMAFF CATDIS	7 3 1	0.007 0.003 0.001	PIMPRO CATLAT CATDIS	32 17 4	0.030 0.016 0.004	CATLAT FUNZEB GAMAFF	8 4 1	0.007 0.003 0.001	CATDIS GAMAFF CATLAT	34 6 5	0.029 0.005 0.004	PIMPRO CATLAT CYPCAR	13 6 2	0.009 0.004 0.001
CATLAT	2	0.001				GAMAFF CYPCAR AMEMEL	3 3 1	0.003 0.003 0.001	LEPCYA PIMPRO	1 1	0.001 0.001	AMEMEL PIMPRO	1	0.001 0.001	CATDIS GAMAFF PTYLUC	1	0.001 0.001 0.001
							1	0.001							LEPCYA	1	0.001
N	2417			683			615			338			815			457	
AREA	1465			1002			1072			1147			1171			1484	
DENSITY	1.650			0.682			0.574			0.295			0.696			0.308	
Н	0.205			0.264			0.810			0.771			1.012			1.224	

Table 25. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 2 during autumn 2000 - 2005.

Figure 27. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 2 primary channel.

2000			2001			2002			2003			2004			2005		
SPECIES	Ν	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN
CYPLUT	2750	8.567	CYPLUT	30	0.417	CYPLUT	49	0.754	CYPLUT	18	0.439	CYPLUT	6	0.390	CYPLUT	31	0.626
PIMPRO	144	0.449	PIMPRO	9	0.125	PIMPRO	36	0.554	ICTPUN	8	0.195	PIMPRO	2	0.130	PIMPRO	11	0.222
GAMAFF	114	0.355	CATLAT	1	0.014	CYPCAR	2	0.031	PIMPRO	1	0.024				MICSAL	2	0.040
ICTPUN	37	0.115				CATLAT	1	0.015	LEPCYA	1	0.024						
CATLAT	9	0.028				ICTPUN	1	0.015									
CYPCAR	5	0.016															
CATDIS	3	0.009															
RHIOSC	2	0.006															
MICSAL	1	0.003															
BKWS N	8			5			4			2				2		2	
Ν	3065			40			89			25				8		44	
AREA	321			72			65			41				15.4		49.5	
DENSITY	9.548			0.556			1.369			0.610				0.519		0.888	
Н	0.351			0.428			0.467			0.317				0.562		0.734	

Table 26. Number and density (number/m²) of fishes in San Juan River backwaters in Geomorphic Reach 2 during autumn 2000 - 2005.

REACH 1 SUMMARY

Five species were collected in the primary channel of Reach 1 in 2005 (Table 27). Similar to other years, red shiner comprised nearly 80% of the fishes collected. Speckled dace was the only native species collected in 2005. Flannelmouth sucker was collected each of the previous 5 years sampling and bluehead sucker 4 of the previous 5 years. Fish density and area sampled was lower in 2005 than previous years. Native species did not make up more than 10% of collections in Reach 1 primary channel collections from 2000 through 2005 (Figure 28).

No backwater was sampled in Reach 1 from 2003 through 2005 (Table 28). From 2000 to 2002, red shiner was the most commonly collected species in Reach 1 backwaters, comprising over 95% of the fish collected. In 2000, fish density was nearly ten times higher than in 2001 and 2002.

	2000		,	2001		2	2002			2003		,	2004		4	2005		
SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	SPECIES	N	DEN	
CYPLUT GAMAFF PIMPRO CATLAT	3664 336 17 2	12.856 1.179 0.060 0.007	CYPLUT PIMPRO CATLAT ICTPUN	142 3 2 2	0.686 0.014 0.010 0.010	CYPLUT ICTPUN PIMPRO RHIOSC	502 30 15 15	2.154 0.113 0.056 0.056	CYPLUT ICTPUN CATLAT RHIOSC	76 36 2 2	0.198 0.094 0.005 0.005	CYPLUT ICTPUN PIMPRO CATLAT	143 38 10 4	0.531 0.141 0.037 0.015	CYPLUT RHIOSC ICTPUN PIMPRO	40 4 4 2	0.128 0.021 0.021 0.011	
RHIOSC CATDIS FUNZEB	1 1 1	0.004 0.004 0.004	RHIOSC FUNZEB	1	0.005 0.005	CATLAT CATDIS CYPCAR	3 1 1	0.011 0.004 0.004	CATDIS FUNZEB PIMPRO	1 1 1	0.003 0.003 0.003	CATDIS RHIOSC	32	0.011 0.007	CYPCAR	1	0.005	
N	4025			151			567			119			200			51		
AREA	285			207			266			383			269			187		
DENSITY	14.123			0.729			2.132			0.311			0.743			0.272		
Н	0.245			0.259			0.387			0.906			0.892			0.794		

Table 27. Number and density (number/m²) of fishes in San Juan River primary channel in Geomorphic Reach 1 during autumn 2000 - 2005.

Figure 28. Relative abundance of native and nonnative fishes and assemblage diversity in Reach 1 primary channel.

	2000		,	2001		,	2002		2003	2004	2005
SPECIES	Ν	DEN	SPECIES	Ν	DEN	SPECIES	N	DEN			
CYPLUT GAMAFF PIMPRO CATLAT CATDIS ICTPUN CYPCAR LEPMAC	4769 91 57 9 9 4 3 2	31.977 0.419 0.263 0.042 0.042 0.018 0.014 0.009	CYPLUT PIMPRO RHIOSC ICTPUN GAMAFF CATLAT	97 1 1 1 1 1	2.425 0.025 0.025 0.025 0.025 0.025	CYPLUT PIMPRO ICTPUN CYPCAR AMEMEL GAMAFF	99 14 8 1 1 1	2.25 0.318 0.182 0.023 0.023 0.023	N O B A C K W A T E R S	N O B A C K W A T E R S	N O B A C K W A T E R S
BKWS N N AREA DENSITY H	7 4944 217 22.783 0.157			4 104 40 2.6 0.325			2 124 44 2.818 0.501				~

Table 28. Number and density (number/ m^2) of fishes in San Juan River backwaters in Geomorphic Reach 1 (RM 17 – RM 0) during autumn, 2000 – 2005.
DENSITY VERSUS DISCHARGE

There were few significant correlations of fish density in the primary channel with discharge attributes for the 2000 through 2005 period (Table 29). In Reach 5, density of red shiner was negatively associated with summer flows. Densities of flannelmouth sucker and bluehead sucker were positively related to the number of low summer discharge (<500 cfs) days in Reach 4.

There were more significant correlations for secondary channels, especially for nonnative species. In Reach 6, red shiner density was negatively associated with high spring discharge and density of all nonnatives was positively associated with number of low summer discharge (<500 cfs) days. Density of nonnative species (namely red shiner) was negatively associated with summer flows in secondary channels in Reaches 5-3. In Reach 5 secondary channels, bluehead sucker density was positively related to spring discharge and flannelmouth sucker density was positively related to low summer discharge (<500 cfs) days. No other native species densities were significantly correlated to discharge in secondary channels.

Table 29. Regression analysis results for density of commonly collected fish species in the San Juan River versus average mean daily spring discharge, average mean daily summer discharge, and days mean daily summer discharge less than 500 cfs from 2000-2005. Shaded areas indicate significant relationship (p<0.05)

		Reach	h 6 Primary						Reach	6 Secondary			
	SPRI	NG Q	SUMM	IER Q	<500) CFS		SPRI	NG Q	SUMM	ER Q	<500	CFS
	R	р	R	р	R	р		R	р	R	р	R	р
NATIVES	0.049	0.926	0.214	0.683	0.048	0.928	NATIVES	-0.500	0.315	-0.230	0.666	0.522	0.288
CATDIS	0.072	0.893	0.379	0.458	0.221	0.674	CATDIS	-0.620	0.194	-0.420	0.413	0.795	0.059
CATLAT	-0.500	0.313	0.200	0.705	0.441	0.381	CATLAT	-0.720	0.103	-0.130	0.799	0.664	0.151
RHIOSC	0.148	0.779	0.167	0.752	-0.060	0.911	RHIOSC	-0.200	0.707	-0.150	0.770	0.207	0.695
NONNATIVES	-0.230	0.661	-0.740	0.096	0.329	0.524	NONNATIVES	-0.850	0.013	-0.580	0.227	0.955	0.003
CYPLUT	-0.170	0.745	-0.680	0.137	0.246	0.638	CYPLUT	-0.880	0.020	-0.400	0.433	0.857	0.029
GAMAFF	-0.240	0.653	-0.680	0.138	0.173	0.743	GAMAFF	-0.630	0.178	-0.620	0.191	0.860	0.028
ICTPUN	-0.100	0.850	-0.210	0.686	0.168	0.750	ICTPUN						
PIMPRO	-0.460	0.356	-0.480	0.338	0.783	0.065	PIMPRO	-0.560	0.246	-0.440	0.386	0.799	0.057
	Reach 5 Primary					Reach 5 Secondary					dary		
-		NG Q	SUMMER Q		<500 CFS			SPRING Q		SUMMER Q		<500 CFS	
-	R	р	R	р	R	р		R	р	R	р	R	р
NATIVES	-0.170	0.743	-0.260	0.617	0.205	0.697	NATIVES	0.529	0.281	0.499	0.313	-0.270	0.599
CATDIS	-0.290	0.578	-0.400	0.435	0.410	0.419	CATDIS	0.821	0.045	0.771	0.072	-0.570	0.235
CATLAT	-0.700	0.121	-0.350	0.500	0.547	0.262	CATLAT	-0.620	0.192	-0.530	0.275	0.894	0.016
RHIOSC	-0.130	0.807	-0.230	0.656	0.163	0.757	RHIOSC	-0.190	0.716	-0.190	0.717	0.204	0.699
NONNATIVES	-0.460	0.358	-0.880	0.021	0.497	0.316	NONNATIVES	-0.640	0.164	-0.940	0.006	0.693	0.127
CYPLUT	-0.420	0.402	-0.860	0.026	0.440	0.382	CYPLUT	-0.640	0.168	-0.940	0.005	0.685	0.133
GAMAFF	-0.370	0.472	-0.750	0.083	0.380	0.459	GAMAFF	-0.270	0.604	-0.730	0.101	0.316	0.541
ICTPUN	-0.420	0.409	-0.150	0.777	0.358	0.456	ICTPUN	-0.200	0.703	0.057	0.915	0.071	0.893
PIMPRO	-0.500	0.312	-0.470	0.342	0.817	0.047	PIMPRO	-0.580	0.232	-0.980	0.019	0.648	0.164
		Reach	h 4 Primary						Reach	4 Secondary			
-	SPRI	ING Q SUMMER Q		<500 CFS			SPRING Q		SUMMER Q		<500 CFS		
-	R	р	R	р	R	р		R	р	R	р	R	р
NATIVES	0.099	0.853	0.370	0.470	0.033	0.951	NATIVES	-0.030	0.954	-0.040	0.938	0.085	0.873
CATDIS	-0.650	0.158	-0.450	0.374	0.861	0.028	CATDIS	-0.360	0.480	-0.380	0.457	0.546	0.262
CATLAT	-0.550	0.257	-0.340	0.503	0.815	0.048	CATLAT	-0.570	0.241	0.047	0.929	0.294	0.572
RHIOSC	0.199	0.705	0.451	0.370	-0.100	0.851	RHIOSC	0.079	0.882	-0.030	0.956	0.006	0.991
NONNATIVES	-0.460	0.357	-0.810	0.053	0.463	0.355	NONNATIVES	-0.580	0.227	-0.900	0.015	0.694	0.126
CYPLUT	-0.230	0.664	-0.710	0.114	0.314	0.544	CYPLUT	-0.580	0.227	-0.930	0.006	0.663	0.151
GAMAFF	-0.410	0.417	0.194	0.713	0.096	0.856	GAMAFF	0.038	0.942	-0.540	0.271	-0.200	0.703
ICTPUN	0.080	0.880	0.488	0.327	0.157	0.766	ICTPUN	0.695	0.125	0.794	0.059	-0.500	0.317
PIMPRO	-0.530	0.282	-0.360	0.486	0.767	0.075	PIMPRO	-0.510	0.305	-0.430	0.396	0.717	0.109
		Reach	h 3 Primary						Reach	3 Secondary			
	SPRI	NG Q	SUMM	IER O	<500 CFS			SPRING Q		SUMMER Q		<500 CFS	
-	R	p	R	p	R	p		R	p	R	p	R	p
NATIVES	-0.060	0.909	0.188	0.722	0.362	0.480	NATIVES	0.378	0.461	0.290	0.577	0.004	0.994
CATDIS	-0.010	0.992	-0.120	0.826	0.179	0.735	CATDIS	0.266	0.610	0.070	0.895	0.003	0.995
CATLAT	-0.480	0.340	-0.460	0.353	0.752	0.085	CATLAT	0.248	0.635	-0.200	0.698	-0.120	0.828
RHIOSC	-0.030	0.953	0.245	0.640	0.328	0.526	RHIOSC	0.371	0.469	0.358	0.486	0.021	0.969
NONNATIVES	-0.470	0.347	-0.730	0.101	0.563	0.245	NONNATIVES	-0.460	0.363	-0.890	0.018	0.603	0.206
CYPLUT	-0.450	0.374	-0.730	0.103	0.523	0.287	CYPLUT	-0.500	0.307	-0.920	0.008	0.627	0.182
GAMAFF	-0.200	0.707	-0.660	0.154	0.159	0.764	GAMAFF	-0.210	0.697	-0.580	0.223	0.060	0.909
ICTPUN	-0.060	0.914	0.443	0.379	0.127	0.811	ICTPUN	0.731	0.099	0.806	0.053	-0.490	0.322
PIMPRO	-0.490	0.322	-0.370	0.473	0.763	0.078	PIMPRO	-0.430	0.399	-0.740	0.091	0.549	0.249
		Reed	h 2 Primary						Pagal	h 1 Primary			
	SPRING Q SUMMER Q			<500) CFS		SPRING Q SUMMER Q			ER Q	<500 CFS		
-	R	p	R	р	R	р		R	р	R	p	R	р
NATIVES	-0.450	0.370	0.181	0.732	0.236	0.652	NATIVES	-0.450	0.367	-0.330	0.525	0.776	0.070
CATDIS	-0.270	0.608	-0.280	0.587	0.289	0.578	CATDIS	-0.490	0.328	-54.000	0.264	0.544	0.264
CATLAT	-0.430	0.391	0.201	0.702	0.151	0.776	CATLAT	-0.560	0.250	-0.680	0.140	0.562	0.246
RHIOSC	-0.360	0.485	0.253	0.628	0.239	0.648	RHIOSC	-0.250	0.627	-0.070	0.888	0.594	0.214
NONNATIVES	-0.140	0.793	-0.750	0.083	0.140	0.792	NONNATIVES	-0.360	0.481	-0.800	0.055	0.377	0.461
CYPLUT	-0.100	0.849	-0.730	0.101	0.094	0.859	CYPLUT	-0.340	0.504	-0.790	0.061	0.362	0.480
GAMAFF	-0.170	0.746	-0.670	0.101	0.094	0.839	GAMAFF	-0.130	0.802	-0.600	0.001	0.302	0.480
ICTPUN	-0.170	0.746	0.384	0.143	0.123	0.655	ICTPUN	-0.130	0.802	-0.180	0.210	0.665	0.892
ICTFUN					0.234 0.429	0.655	PIMPRO	-0.390	0.220	-0.180	0.728		0.149
PIMPRO	-0.210	0.693	-0.320	0.536								0.683	

Mean daily discharge during sampling varied among years (Figure 29). During sampling in the upper reaches, discharge was highest in 2004, while in the lower reaches the highest discharge at time of sampling occurred in 2005.

Figure 29. Total sample density (total number of fish captured/total area sampled) and mean daily discharge during sampling for Reaches 6-4, San Juan River, New Mexico. Note log scale for density axis.

Figure 30. Total sample density (total number of fish captured/total area sampled) and mean daily discharge during sampling for Reaches 3-1, San Juan River, New Mexico. Note log scale for density axis.

RARE FISHES – 2005

For the sixth consecutive year roundtail chub was not collected in small-bodied sampling on the San Juan. However, for the first time, razorback sucker (n = 1, 403 mm TL) was collected in a shoal habitat in the primary channel in 2005 (Table 30). Three Colorado pikeminnow were collected, two in the primary channel and one in a secondary channel.

Species	Channel	Reach	Total Length (mm)	Habitat
XYRTEX	Primary	5	403	Shoal
PTYLUC	Primary	3	166	Shore run
PTYLUC	Primary	2	289	Eddy
PTYLUC	Secondary	4	179	Shoal

Table 30. Rare fishes collected in autumn sampling of the San Juan River.

SPECIES LONGITUDINAL DISTRIBUTIONS – 2005

Overall density of fishes varied among reaches. Reaches 6 and 3 had the highest fish density (1.36 and 0.98 fish/m²) in the primary channel while Reaches 2 and 1 had the lowest (0.31 and 0.27 fish/m²). For secondary channels, Reach 5 had the highest fish density (1.83 fish/m²) and Reach 6 the lowest (0.02 fish/m²).

Densities of commonly collected native species in the primary channel generally decreased in a downstream direction, similar to the pattern seen in 2004 (Figure 31). However, Reach 5 had lower densities than Reaches 4 and 3. Density increased downstream in secondary channels. This was opposite the 2004 pattern of downstream decreases. Speckled dace was the most commonly collected native species in all reaches.

Figure 31. Longitudinal density patterns of commonly collected native fish species in primary and secondary channels, San Juan River, 2005. Error bars represent standard error of sample densities.

Nonnative fishes did not follow similar patterns. Red shiner densities in the primary channel were higher in Reaches 6 through 3 than Reaches 2 and 1 (Figure 32). Reach 5 secondary channels had the highest density of red shiner. Channel catfish densities increased slightly in secondary channels in a downstream direction. Fathead minnow densities did not suggest a longitudinal pattern.

Figure 32. Longitudinal density patterns of commonly collected nonnative fish species in primary and secondary channels, San Juan River, 2005. Error bars represent standard error of sample densities.

MEAN TOTAL LENGTH – 2005

Generally, fishes collected in secondary channels were larger than their counterparts collected in the primary channel (Figure 33). Red shiner (t = $-18.0_{(3402 \text{ df})}$, p < 0.005), fathead minnow (t = $-3.03_{(387 \text{ df})}$, p < 0.005), and speckled dace (t = $-4.37_{(1275 \text{ df})}$, p < 0.005) collected in the primary channel were significantly smaller than those collected in secondary channels. Western mosquito fish was the only species that was larger in the primary channel (t = $2.51_{(59 \text{ df})}$, p < 0.01). Size differences were not quite as significant for species that attain larger body sizes due to greater variance in sizes:

bluehead sucker (t = -0.28 $_{(95 \text{ df})}$, p < 0.10), flannelmouth sucker (t = -1.5 $_{(135 \text{df})}$, p < 0.10), and channel catfish (t = -1.48 $_{(505 \text{ df})}$, p < 0.10).

Figure 33. Mean total length of commonly collected species in primary and secondary channels, San Juan River, 2005. Error bars represent standard error of mean total length.

ELECTROFISHING AND SEINING COMPARISON - 2005

In 2004, electrofishing into a bag seine was added to the sampling methods. This method was added in an attempt to capture size and species of fishes that were perhaps underrepresented by the seine-only collections in small-bodied fish monitoring. Electrofishing was conducted in riffles in Reaches 6, 4, and 3. Speckled dace was the only species collected in 146 m² (Table 31). In comparison, 459 m² of riffle habitat was sampled using kick sampling into seines for the same reaches and six species were collected. Subsamples of fish were measured for each collection method. On average,

the speckled dace collected with the aid of electrofishing were significantly larger than those collected by kick sampling (t = $6.19_{(254 \text{ df})}$, p < 0.005).

	CATDIS		CATLAT		CYPLUT		ICTPUN		PIMPRO		RHIOSC	
	Electro fishing	Seining										
Total N	0	3	0	1	0	49	0	4	0	5	70	264
Mean TL		177.67		205.00		38.00		142.67		40.40	71.55	52.83
St. Dev TL		12.66				14.46		149.29		6.31	12.90	13.89

Table 31. Fish species collected in riffle habitats of the primary channel in Reaches 6, 4, and 3, San Juan River, 2005.

DISCUSSION

The San Juan River is a hydrologically dynamic system where changing flows alter habitat structure and availability on a daily and seasonal basis. These changes, in turn, influence density of fish species and their spatial distribution in the system. Sampling conducted during autumn each year is aimed at collecting data that reflect and reveal the essence of the system and how it has changed or not over the preceding monitoring period. Basic assumptions are that sampling occurs under similar conditions each year and that there is minimum variation in sampling efficiency among years. If these assumptions are satisfied, then changes, or lack, in species density or spatial distribution should reflect overall assemblage changes. Since structured monitoring of San Juan River fish assemblages began in 2000, discharge during autumn sampling ranged from about 200 cfs to over 4000 cfs. Nonetheless, there does not appear to be a correlation between discharge at time of small-bodied fish assemblage monitoring and fish density. Thus, changes in density are assumed to represent response of fishes to numerous environmental factors, including those associated with mimicry of a natural flow regime.

A specific task of small-bodied monitoring is to document survival of age-0 Colorado pikeminnow and razorback sucker during their first months of life. The larval fish monitoring effort has regularly collected age-0 razorback suckers since 1998, but only 3 larval Colorado pikeminnow have been collected since 2001 (Brandenburg and Farrington 2006), Age-0 individuals of neither species has been collected during autumn small-bodied fishes monitoring efforts (this study) and few, if any, wild-spawned individuals of either species, have survived to adulthood (Ryden 2006, Jackson 2006). Paucity of adult Colorado pikeminnow is likely a primary reason so few larval specimens have been collected since 2001, but reproduction by razorback sucker has been annually documented since 1998. It is unlikely wildspawned age-0 Colorado pikeminnow will be regularly collected during autumn small-bodied fishes monitoring efforts until an adult population is present. Failure to collect wild-spawned age-0 razorback sucker during autumn monitoring is a bit more perplexing, but is likely because survival to autumn is low or nonexistent or sampling methods (seining) are not appropriate. Inadequacy of sampling methods does not seem a likely reason as methods used on San Juan River are the same as used elsewhere in Colorado River drainage. Rather, absence of age-0 razorback sucker in autumn monitoring is likely because of low post-larvae survival. To date, no study has been initiated to determine why survival of wild-spawned San Juan River razorback sucker is so low, or absent. In addition, only marginal effort has been

72

made to determine what factors limit survival of stocked age-0 Colorado pikeminnow.

A primary justification for operation of Navajo Reservoir to mimic the natural hydrograph was to enhance or improve status of protected as well as other native fishes. Presumably, natural flow regime mimicry would concurrently negatively influence nonnative fishes. The general increase in native small-bodied fishes relative abundance in both primary and secondary channel habitats would seem to suggest that native fishes have responded positively to a mimicked natural hydrograph. However, only bluehead sucker autumn density in Reach 5 was significantly, and positively, related to spring discharge. Elevated summer discharge generally negatively influenced (but only occasionally significantly) nonnative fishes autumn density. Interpretations of analyses and discernment of trends are compromised by limited power of analyses (i.e., only 6 data points per analysis). An equally important restraint on data interpretation is the effect of below average flows for much of most years since 2000; average mean daily discharge during spring did not exceed 3000 cfs in any year except 2005 and there were extended periods of low flow (<500 cfs) during summer of all years except 2001 and 2005. Despite strong cautions against over-extending interpretations of these data, it does appear that status of native fishes has improved since natural flow regime mimicry began in 1998.

SUMMARY

73

PRIMARY CHANNEL

- Five native and eight nonnative species were collected in 2005. Since 1998, seven native and nine nonnative species were captured in San Juan River primary channel habitats during small-bodied monitoring (Reaches 6-1).
- A single razorback sucker was collected in Reach 5 primary channel, the first for small-bodied monitoring studies.
- 3. Red shiner was the most common species in all years.
- 4. Speckled dace was second-most common species, except for 2000 when western mosquitofish was and 2002 when fathead minnow were second-most common.
- Greatest number of specimens was collected in 2000 (n=22,887) and 2004 (n=17,042).
- The greatest primary channel area sampled was in 2004 (7787 m²) and secondwas in 2005 (5975 m²).
- Greatest native fish density (0.65 fish/m²) was in 2004 and least (0.05 fish/m²) was in 2000. Native fish density in 2005 was 0.24 fish/m².
- Greatest nonnative fish density (5.02 fish/m²) was in 2000 and least (0.23 fish/m²) was in 1999. Nonnative fish density in 2005 was 0.54 fish/m².
- More flannelmouth and bluehead sucker were collected in samples from 2002 through 2005 than in 1998 through 2001. Densities of both species were highest in 2004.
- Shoal was the most commonly sampled mesohabitat in the primary channel in 2005.

SECONDARY CHANNELS

- Six native and eleven nonnative species have been collected in secondary channels of the San Juan River since 1998.
- 2. Yellow bullhead was found in secondary channels in 1998, 2001, and 2005 but was never found in the primary channel of the San Juan River.
- Red shiner was the most commonly collected species in San Juan River secondary channels in all years.
- 4. Fathead minnow was second-most common from 2000 through 2004; speckled dace was second-most common in 1998, 1999, and 2005.
- The greatest number of fish collected in secondary channels was in 2004 (n=11,109) and fewest in 2005 (n=1040).
- The greatest secondary channel area sampled was in 2000 (1914 m²) and least was in 2005 (1040 m²).
- Overall density was highest in 2002 (6.26 fish/m²) and lowest in 1999 (0.32 fish/m²). 2005 density was 1.35 fish/m².
- Run mesohabitats (run, mid-channel run, and shore run) comprised nearly 40% of the area sampled in secondary channels in 2005.
- 9. In secondary channels, bluehead sucker and speckled dace were found mainly in riffle habitats in 2005.
- 10. Colorado pikeminnow was found in secondary channels of the San Juan River in 1998, 1999, 2000, 2004, and 2005.

BACKWATERS

- Since 1999, four native and ten nonnative fish species have been collected in backwaters of the San Juan River.
- Colorado pikeminnow was found in backwater habitat in 1999 and 2000. No other rare fish species has been collected in backwaters.
- Red shiner and fathead minnow have numerically dominated backwater collections since 1999, comprising over 95% of the sample in all years, except 2003 and 2005.
- 4. Though usually collected, flannelmouth sucker was never numerous in backwater areas, except in 2005; 113 individuals were collected in Reach 6 backwaters.
- In 2000, over 25,700 fish were collected in backwater areas including 23,898 red shiners. The lowest number of fish collected was in 1999 (n=459).
- 6. The most backwater area sampled was in 2000 (1576 m²); least in 1999 (242 m²).
- The highest fish density in backwaters was in 2000 (16.32 fish/ m²); lowest was in 2003 (1.57 fish/ m²).

COMMON SPECIES SUMMARIES

 Bluehead sucker density was highest in Reach 6 in 2005. The majority were found in moderate- and fast-velocity mesohabitats. Density of bluehead sucker in 2005 was lower than 2004 in most reaches and channels.

- There was a large concentration of flannelmouth sucker in Reach 6 backwaters in 2005. In most years, Reach 6 primary and secondary channels had the highest density of flannelmouth sucker.
- Densities of speckled dace were generally lower in 2005 than 2004, except Reach
 It was consistently found in riffle and run mesohabitats in 2005.
- Density of red shiner significantly decreased in secondary channels of all reaches in 2005. The highest density of red shiner was in 2000. Red shiner was found most often in slow-velocity mesohabitats in 2005.
- Reaches 4 and 3 had the highest density of channel catfish in recent years. Only two individuals have been found in Reach 6 since 2000. Channel catfish was found most often in slow- and moderate-velocity mesohabitats.
- 6. Density of fathead minnow decreased in 2005 in Reach 5 primary and secondary channels and Reach 4 secondary channels from 2004 levels. Fathead minnow was often sampled in slower-velocity mesohabitats, especially backwaters.

LITERATURE CITED

Bliesner, R., and V. Lamarra. 2002. Hydrology, geomorphology, and habitat studies; final report. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM.

- Brandenburg, W.H., and M.A. Farrington. 2006. Colorado pikeminnow and razorback sucker larval fish survey in the San Juan River during 2005, final report. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM.
- Jackson, J.A. 2006. Nonnative control in the lower San Juan River 2005, Final Interim Progress Report. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM.
- Propst, D.L., S.P. Platania, D. Ryden, and R. Bliesner. 2000. San Juan monitoring plan and protocols. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM.
- Ryden, D.W. 2006. Long-term monitoring of sub-adult and adult large-bodied fishes in the San Juan River: 2005 interim progress report. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, Albuquerque, NM.

ACKNOWLEDGEMENTS

Many thanks to Nate Franssen (KSU) with his help in field and laboratory work as well as Julie Jackson, the many USFWS Grand Junction folks, the UNM- MSB crew (Alexandra Snyder, Lee Renfro, Mike Farrington, and Howard Brandenburg) and USFWS-NMFRO crew (Weston Furr, Jason Davis, Leeanna Torres, and Steve Davenport) for their assistance on this project. Thanks to Steve Ross and Paul Holden for their review and comments on this report.